Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'pulse control':
Найдено статей: 5
  1. Ухоботов В.И., Зайцева О.В.
    Об одной задаче импульсной встречи, с. 42-45

    Рассматривается игровая задача импульсной встречи в заданный момент времени, в случае когда первый игрок выбирает группу импульсных управлений, на выбор каждого из которых в процессе управления можно потратить свое заданное количество ресурсов. На выбор управления второго игрока накладывается геометрическое ограничение. Найдены достаточные условия возможности окончания игры из заданного начального состояния и построены соответствующие импульсные управления.

    Ukhobotov V.I., Zaytseva O.V.
    About one problem of a pulse meeting, pp. 42-45

    We consider the game problem of a pulse meeting in the given moment of time, in the case when the first player chooses group of pulse managements, for choice of each of which it is possible to spend the set quantity of resources in control process. On choice of control of the second player geometrical restriction is imposed. Sufficient conditions of possibility of the termination of game from preset start state are found and corresponding pulse controls are constructed.

  2. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  3. Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    Целью управления является  движение системы по  множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием  позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности  множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.

    Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения

    A(t,x)F(t,x)+u,

    где u - позиционное импульсное управление, и скользящими режимами системы

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы  более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.

    We consider a controlled mechanical system with dry friction and positional pulse or positional discontinuous control. It can be presented in a form of Lagrange equations of the second kind

    A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, tI=[t0,t0+T]. (1)

    The goal of the control is the motion of the system (1) in set S={(t,q,dq/dt)∈I×Rn×Rnσ(t,q,dq/dt)=0} (problem of stabilization) or in the neighborhood of set S (approach problem). The first problem is solved with discontinuous positional control of relay type with limited resources, for which a decomposition mode is a stable sliding mode of system (1). In case of insufficiency of resources of discontinuous control the motion of the controlled system in the neighborhood of set S can be implemented under high-frequency impacts on the system in discrete time moments in the pulse-sliding mode, the uniform limit of which (an ideal pulse-sliding mode) is equal to the decomposition mode. The distinctive feature of the assigned problems is dry friction in the system (1), and said dry fiction, generally speaking, can be considered as uncontrollable discontinuous or multivalued perturbations. 

    Main definitions are given in the introduction of the article. In the first section the connection between ideal pulse-sliding modes of inclusion

    A(t,x)F(t,x)+u,

    where u is a positional pulse control, and sliding modes of system

    A(t,x)F(t,x)+B(t,x)ũ(t,x)

    with a positional discontinuous control is considered. The second section is devoted to systems of type (1). In the third section we consider set S, which is important in relation to applications and is defined by the vector function σ(t,q,dq/dt)=dq/dt-φ(t,q). For the last case more simple and informative conditions of the existence of sliding modes for a system with discontinuous controls were used. An example was considered in conclusion.

  4. Рассматривается линейная дифференциальная игра с импульсным управлением первого игрока. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым задача усложняется. Управление второго игрока стеснено геометрическими ограничениями. Вектограммы игроков описываются одним и тем же шаром с разными радиусами, зависящими от времени. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. С помощью максимального стабильного моста, определенного авторами ранее, построены оптимальные управления игроков.

    We consider a linear differential game with a pulse control of the first player. The abilities of the first player are determined by the stock of resources that the player can use when forming his control. At certain instants of time a separation of part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, resulting in the complication of the problem. The control of the second player has geometrical constraints. The vectograms of the players are described by the same ball with different time-dependent radii. The terminal set of the game is determined by the condition of belonging the norm of a phase vector to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. With the maximal stable bridge, which has been defined by the authors previously, optimal controls of players are constructed.

  5. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

    Chentsov A.G., Savenkov I.I., Shapar J.V.
    A problem of program maximin with constraints of asymptotic nature, pp. 91-110

    We consider a linear game control problem for maximin with asymptotic constraints, which naturally arise in connection with the realization of “narrow” control pulses. In terms of content, this corresponds to pulsed control modes with full fuel consumption. The emerging game problem corresponds to the use of asymptotic control modes by both players, which is reflected in the expansion concept realized in the class of finitely additive measures. The original content control problem for each of the players is considered as a variant of abstract formulation related to attainability under asymptotic constraints, for which the corresponding generalized attainability problem is constructed and the representation of the attraction set playing the role of an asymptotic analogue of an attainability domain in the classical control theory is established. This concretization is realized for each of the players, on the basis of which a generalized maximin is obtained, for which a variant of the asymptotic realization in the class of ordinary controls is indicated. A “finite-dimensional” description of the attraction set is obtained, which makes it possible to find maximin using numerical methods. The solution of a model example of the problem of game interaction of two material points, including the stage of computer modeling, is considered.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref