Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'quadratic pencil of Sturm–Liouville equations':
Найдено статей: 1
  1. В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.

    In this study we consider the Kaup–Boussinesq system with a self-consistent source. We show that the Kaup–Boussinesq system with a self-consistent source can be integrated by the method of inverse scattering theory. For a solving the problem under consideration, we use the direct and inverse scattering problem of the SturmLiouville equation with an energy-dependent potential. The time evolution of the scattering data for the SturmLiouville equation with an energy-dependent potentials associated with the solution of the Kaup–Boussinesq system with a self-consistent source is determined. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Kaup–Boussinesq system with a self-consistent source.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref