Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'regular quaternion function':
Найдено статей: 2
  1. Полянский И.С., Радыгин В.М., Мисюрин С.Ю.
    Разложение регулярной кватернион-функции, с. 36-47

    В статье рассмотрены задачи, связанные с разложением регулярной кватернион-функции в обобщенные ряды Тейлора и Лорана. Обобщенный ряд Тейлора для регулярной кватернион-функции получен путем разложения ядра Коши в 4-мерном гипершаре в алгебре кватернионов и в системе гиперсферических координат. Обобщенный ряд Лорана для регулярной кватернион-функции получен путем разложения ядра Коши во внешности 4-мерного гипершара в алгебре кватернионов и в системе гиперсферических координат. На основе полученных решений при рассмотрении разложения регулярной кватернион-функции в бесконечно малом шаре, который ограничен 3-сферой, задано правило определения вычета регулярной кватернион-функции в алгебре кватернионов и в системе гиперсферических координат относительно изолированной особой точки. Также найдено разложение мероморфной кватернион-функции в степенной ряд.

    Polansky I.S., Radygin V.M., Misyurin S.Y.
    Decomposition of a regular quaternion function, pp. 36-47

    This article deals with the tasks associated with the decomposition of a regular quaternion function into generalized Taylor and Laurent series. The generalized Taylor series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. The generalized Laurent series for a regular quaternion function were obtained by the decomposition of the Cauchy kernel in the exterior of a 4-dimensional hyperball in the algebra of quaternions and the hyperspherical coordinate system. On the basis of the obtained solutions by considering the decomposition of a regular quaternion function in an infinitely small ball that is restricted by the 3-sphere, we set the rule to determine the deduction of a regular quaternion function in the algebra of quaternions and the hyperspherical coordinate system regarding the isolated singular point. In addition, the decomposition of a meromorphic quaternion function into the power series was found.

  2. Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.

    Many tasks of motion control and navigation, robotics and computer graphics are related to the description of a rigid body rotation in three-dimensional space. We give a constructive solution for the smooth movement of a rigid body to solve such problems. The smooth movement in orientational space is along the shortest path. Spherical solid body motion is associated with the movement of the point on the hypersphere in four-dimensional space along the arcs of large radius through the vertices of regular four-dimensional polytope. Smooth motion is provided by the choice of a special nonlinear function of quaternion interpolation. For an analytical presentation of the law of continuous movement, we use the original algebraic representation of the Heaviside function. The Heaviside function is represented using linear, quadratic and irrational functions. The animations in the computer program MathCad illustrate smooth motion of a rigid body through the nodes of a homogeneous lattice on the group $SO(3)$. The algorithm allows one to change in a wide range the time intervals displacements between nodes, as well as the laws of motion on these intervals.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref