Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена исследованию процессов распределения ресурсов в динамических ресурсных сетях, т.е. сетях, пропускные способности дуг которых зависят от времени. Распределение ресурса в сети происходит в дискретном времени, при этом ресурс каждой вершины распределяется только между смежными с ней вершинами по некоторым правилам. Проведено исследование процессов перераспределения ресурса в таких сетях. Основной задачей является разработка методов нахождения предельного состояния (распределения) ресурса в динамической ресурсной сети. Показано, что подход, основанный на построении вспомогательной сети, применим для сведения задачи о распределении ресурса в динамической сети к аналогичной задаче для вспомогательной сети. Для сильно регулярных периодических динамических сетей доказаны теоремы о существовании предельного состояния на вспомогательном графе. Для его нахождения можно использовать подходы, разработанные для решения задачи о кратчайшем пути в динамических сетях.
ресурсная сеть, динамические сети, пороговое значение, процессы распределения ресурсов, предельное состояние в ресурсной сетиThis paper is devoted to studying the processes of resource allocation in dynamic resource networks. In such networks, the capacities of the arcs depend on time. Resource allocation in the network occurs in discrete time. The resource of each vertex is distributed only between adjacent vertices according to some rules. The study of the processes of resource redistribution in such networks is carried out. The main goal is to develop methods for finding the limit state (distribution) of a resource in a dynamic resource network. It is shown that the approach based on the construction of an auxiliary network is also applicable to reduce the problem of resource allocation in a dynamic network to a similar problem in an auxiliary network. Theorems on the existence of a limit state on an auxiliary graph are proved for strongly regular periodic dynamical networks. To find the limit states, one can use the approaches which are developed for the shortest path problem in dynamic networks.
-
Рассмотрена задача оптимального управления движением космического аппарата при коррекции его положения в инерциальной системе координат за счет управляющих моментов, получаемых от ускорений инерционных маховиков бесплатформенной инерциальной навигационной системы. Полученное оптимальное управление обеспечивает плавное изменение ориентации космического аппарата, которое рассматривается как движение по кратчайшей траектории в конфигурационном пространстве специальной ортогональной группы $SO(3)$. Алгоритм управления реализуется с использованием оригинальной процедуры нелинейной сферической интерполяции кватернионов. Основными исполнительными органами ориентации динамического контура управления бесплатформенной инерциальной навигационной системой при решении задачи оптимального управления были выбраны четыре инерционных маховика (три - по осям космического аппарата, четвертый - по биссектрисе). Результаты моделирования верифицируются путем создания анимации корректирующего движения космического аппарата.
космические аппараты, бесплатформенные инерциальные навигационные системы, управляющие моменты, плавное движение
Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system, pp. 252-259We consider the optimal control problem for spacecraft motion during correction of its position in an inertial coordinate system by means of control torques. Control torques arise from the acceleration of inertial flywheels of a strapdown inertial navigation system. We investigate optimal control, which ensures a smooth change in the spacecraft orientation. This smooth corrective motion is described as the motion along the shortest path in the configuration space of a special orthogonal group $SO(3)$. The shortest path coincides with the large circle arc of the unit hypersphere $S^3$. We also consider a control algorithm using the original procedure of nonlinear spherical interpolation of quaternions. Four inertial flywheels are used as the main executive bodies for orientation of the dynamic control loop of the strapdown inertial navigation system when solving the optimal control problem. Three flywheels are oriented along the axes of the spacecraft. The fourth flywheel is oriented along the bisector. The simulation results are presented. We consider examples for corrective motion in which the spacecraft has zero velocity and acceleration at the beginning and end of the maneuver. We give an animation of the corrective movement of the spacecraft. The proposed formalism can be extended to control the spacecraft motion at an initial angular velocity different from zero, as well as in the orbital coordinate system.
-
Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.
дискретное распределение на $SO(3)$, кратчайшие траектории, четырехмерные многогранники, интерполяция кватернионов, функция ХевисайдаMany tasks of motion control and navigation, robotics and computer graphics are related to the description of a rigid body rotation in three-dimensional space. We give a constructive solution for the smooth movement of a rigid body to solve such problems. The smooth movement in orientational space is along the shortest path. Spherical solid body motion is associated with the movement of the point on the hypersphere in four-dimensional space along the arcs of large radius through the vertices of regular four-dimensional polytope. Smooth motion is provided by the choice of a special nonlinear function of quaternion interpolation. For an analytical presentation of the law of continuous movement, we use the original algebraic representation of the Heaviside function. The Heaviside function is represented using linear, quadratic and irrational functions. The animations in the computer program MathCad illustrate smooth motion of a rigid body through the nodes of a homogeneous lattice on the group $SO(3)$. The algorithm allows one to change in a wide range the time intervals displacements between nodes, as well as the laws of motion on these intervals.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.