Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'unconstrained optimization':
Найдено статей: 2
  1. Изучаются аппроксимирующие конечномерные задачи математического программирования, возникающие в результате кусочно-постоянной дискретизации управления (в рамках техники параметризации управления) при оптимизации распределенных систем достаточно широкого класса. Устанавливается непрерывность по Липшицу градиентов функций аппроксимирующих задач; приводятся соответствующие формулы градиентов, использующие аналитическое решение исходной управляемой системы и сопряженной к ней системы и тем самым обеспечивающие возможность алгоритмического разделения проблемы оптимизации и проблемы решения управляемой начально-краевой задачи. Применение к численному решению задач оптимизации иллюстрируется на примере задачи Коши-Дарбу, управляемой по интегральному критерию. Приводятся результаты численного решения соответствующей аппроксимирующей задачи в системе MatLab с помощью программы fmincon, а также авторской программы, реализующей метод условного градиента. Кроме того, рассматривается задача безусловной минимизации, получаемая из аппроксимирующей задачи с ограничениями методом синус-параметризации. Приводятся результаты численного решения указанной задачи в системе MatLab с помощью программы fminunc, а также авторских программ, реализующих методы наискорейшего спуска и BFGS. Результаты численных экспериментов подробно анализируются.

    We study approximating finite-dimensional mathematical programming problems arising from piecewise constant discretization of the control (in the framework of control parametrization technique) in the course of optimization of distributed parameter systems of a rather wide class. We establish the Lipschitz continuity for gradients of approximating problems. We present their formulas involving analytical solutions of an original controlled system and their adjoint one, thereby giving the opportunity for algorithmic separation of the optimization problem itself and the problem of solving a controlled system. Application of the approach under study to numerical optimization of distributed systems is illustrated by example of the Cauchy-Darboux system controlled by an integral criterion. We present the results of numerical solving the corresponding approximation problem in MatLab with the help of the program fmincon and also an author-developed program based on the conditional gradient method. Moreover, the unconstrained minimization problem is investigated that arises from the constrained approximation problem with applying the sine parametrization method. We present the results of numerical solving this problem in MatLab with the help of the program fminunc and also two author-developed programs based on the steepest descent and BFGS methods, respectively. The results of all numerical experiments are analyzed in detail.

  2. Хорошо известно, что методы сопряженного градиента полезны при решении масштабных задач нелинейной оптимизации без ограничений. В данной работе мы рассматриваем объединение лучших свойств двух методов сопряженного градиента. В частности, мы даем новый метод сопряженного градиента, основанный на гибридизации полезных методов DY (Dai-Yuan) и HZ (Hager-Zhang). Параметры гибрида выбираются таким образом, чтобы предложенный метод удовлетворял условиям сопряженности и достаточного спуска. Показано, что новый метод сохраняет свойство глобальной сходимости двух вышеупомянутых методов. Описаны численные результаты для набора стандартных тестовых задач. Показано, что в большинстве случаев эффективность предложенного метода выше, чем у DY и HZ.

    Hafaidia I., Guebbai H., Al-Baali M., GHIAT M.
    A new hybrid conjugate gradient algorithm for unconstrained optimization, pp. 348-364

    It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref