Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Электронный атлас бифуркационных диаграмм гиростата Ковалевской–Яхья
Рассматривается интегрируемый случай Ковалевской–Яхья в динамике гиростата. Представлен новый подход к классификации бифуркационных диаграмм приведенных систем. Получены конструктивно проверяемые условия существования критических движений на сечении фиксированной постоянной площадей поверхностей, несущих бифуркационную диаграмму трех интегралов полной исходной системы. Случаи, когда эти условия претерпевают качественные перестройки, дают аналитические зависимости между постоянной площадей и величиной гиростатического момента, формирующие разделяющее множество в плоскости двух параметров семейства диаграмм приведенных систем. В результате создана компьютерная система, удовлетворяющая введенному понятию электронного атласа.
The electronic atlas of bifurcation diagrams of the Kowalevski–Yehia gyrostat
The integrable case of Kowalevski–Yehia in the dynamics of a gyrostat is considered. We present a new approach to classifying the bifurcation diagrams of reduced systems. We find efficiently checked existence conditions for the critical motions on the area integral constant sections of the surfaces bearing the 3-diagram of the complete system. The cases where these conditions qualitatively change give the analytical expressions of the dependencies between the area constant and the gyrostatic momentum forming the classifying set for the two-parametric family of the reduced systems’ diagrams. Finally, we present a computer system, which satisfies the given definition of the electronic atlas.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.