Обратная краевая задача для эллиптического уравнения второго порядка с дополнительным интегральным условием

 pdf (156K)

В работе исследована одна обратная краевая задача для эллиптического уравнения второго порядка с дополнительным интегральным условием первого рода. Для рассматриваемой обратной краевой задачи вводится определение классического решения. С помощью метода Фурье задача сводится к решению системы интегральных уравнений. С помощью метода сжатых отображений доказывается существование и единственность решения системы интегральных уравнений. Далее доказывается существование и единственность классического решения исходной задачи.

Ключевые слова: обратная краевая задача, эллиптическое уравнение, метод Фурье, классическое решение.
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2012, вып. 1, с. 32-40
DOI: 10.20537/vm120104

 

Inverse boundary value problem for second order elliptic equation with additional integral condition

 

An inverse boundary value problem for the second order elliptic equation with an additional integral condition of the first kind is investigated. We introduce the definition of a classical solution for the considered inverse boundary value problem reduced to solving of the system of integral equations by the use of the Fourier method. First, the existence and uniqueness of solutions of the system of integral equations are proved by using the method of contraction mappings; and then the existence and uniqueness of classical solutions of the original problem are proved.

Keywords: inverse boundary value problem, elliptic equation, Fourier method, classic solution.
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, issue 1, pp. 32-40

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref