Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Индуцированные шумом переходы и деформации стохастических аттракторов в одномерных системах
Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.
Noise-induced transitions and deformations of stochastic attractors for one-dimensional systems
The influence of additive and parametrical noise on attractors of the one-dimensional system governed by the stochastic differential Ito equation is investigated. It is shown that unlike additive, parametrical disturbances lead to the shift of extrema of probability density function. For the value of this shift, a decomposition on small parameter of noise intensity is obtained. It is shown that the influence of the parametrical noise can change not only the arrangement, but also the quantity of extrema of probability density function. The corresponding noise-induced phenomena are studied for three dynamical models in detail. An analysis of the error for the different order estimations of the shift of extrema for the probability density function is presented by the example of a linear model. Two scenarios of the transition between unimodal and bimodal forms of the stochastic attractor are investigated for systems with different types of cubic nonlinearity.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.