Групповое преследование в рекуррентном примере Л.С. Понтрягина

 pdf (189K)

В пространстве $\mathbb R^k$ $(k \geqslant 2)$ рассматривается нестационарная дифференциальная игра (обобщенный пример Л.С. Понтрягина) с $n$ преследователями и одним убегающим при одинаковых динамических и инерционных возможностях всех игроков, описываемая системой вида

$$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$

$$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$

Множество значений допустимых управлений игроков $V$ - строго выпуклый компакт с гладкой границей, $a_{1}(t),\dots, a_{l}(t)$ - непрерывные на $[t_0, \infty)$ функции, терминальные множества - начало координат. Преследователи используют квазистратегии. Предполагается, что функции $\xi_{i}(t)$, являющиеся решением задачи Коши

$$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$

являются рекуррентными. Приводятся свойства рекуррентных функций. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования. Доказательство проводится с использованием метода разрешающих функций. Приведен пример, иллюстрирующий полученные условия.

Ключевые слова: дифференциальная игра, групповое преследование, задача поимки, пример Л.С. Понтрягина, рекуррентная функция
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 3, с. 83-89
DOI: 10.20537/vm140308

Group pursuit in recurrent Pontryagin example

A non-stationary differential game (a generalized example of L.S. Pontryagin) with $n$ pursuers and one evader is considered in the space $\mathbb R^k$ $(k \geqslant 2)$. All players have equal dynamic and inertial capabilities. The game is described by a system of the form

$$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$

$$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$

The set $V$ of admissible player controls is strictly convex compact set with smooth boundary, $a_{1}(t),\dots, a_{l}(t)$ are continuous on $[t_0, \infty)$ functions, the terminal sets are the origin of coordinates. Pursuers use quasi-strategies. It is assumed that functions $\xi_{i}(t)$ being the solution of Cauchy problem

$$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$

are recurrent. Properties of recurrent functions are given. In terms of initial positions and game parameters the sufficient conditions of the pursuit problem solvability are obtained. The proof is carried out using the method of resolving functions. An example illustrating the obtained conditions is given.

Keywords: differential game, group pursuit, capture problem, Pontryagin's example, recurrent function
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2014, issue 3, pp. 83-89

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref