Квазиуровни гамильтониана для углеродной нанотрубки

 pdf (217K)

В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид

$$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида

$$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
+O(\varepsilon^3),$$

где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.

 

Ключевые слова: гамильтониан углеродной нанотрубки, собственное значение, резонанс
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014, вып. 4, с. 76-83
DOI: 10.20537/vm140406

Quasi-levels of the Hamiltonian for a carbon nanotube

In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_{\varepsilon}=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form

$$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

(here $\varepsilon >0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_{\varepsilon}$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega ))^2$, where $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form

$$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
+O(\varepsilon^3),$$

are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.

 

Keywords: Hamiltonian of a carbon nanotube, eigenvalue, resonance
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, issue 4, pp. 76-83

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref