Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Индуцированная шумом перемежаемость и переход к хаосу в нейронной модели Рулькова
В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.
Noise-induced intermittency and transition to chaos in the neuron Rulkov model
A discrete neuron model proposed by Rulkov is studied. In the deterministic version, this system simulates different modes of neural activity, such as quiescence, tonic and chaotic spiking. In the presence of random disturbances, another important mode of bursting characterized by the alternation of quiescence and excitement regimes can be observed. We study the probabilistic mechanisms of noise-induced transitions from quiescence to bursting in the zone of the tangent bifurcation. It is shown that such transitions are accompanied by a transformation of the system dynamics from regular to chaotic. For the analysis of these bifurcation phenomena, the stochastic sensitivity functions technique and method of confidence intervals are used.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.