Текущий выпуск Выпуск 3, 2017 Том 27

О моделировании динамики системы Ball and Beam как нелинейной мехатронной системы с геометрической связью

 pdf (406K)

Рассматривается система Ball and Beam с нелинейной геометрической связью. Из полного уравнения этой связи определяются два возможных положения равновесия системы. Проведен сравнительный анализ структур уравнений возмущенного движения в окрестности обоих положений равновесия, исходя из уравнений без множителей связей в форме М.Ф. Шульгина. На этой основе обсуждается вопрос о допустимости линеаризации геометрических связей. Даны решения задач стабилизации для каждого равновесия при двух вариантах выбора избыточной координаты. Стабилизирующее управление (напряжение на якорной обмотке приводного двигателя) определяется решением методом Н.Н. Красовского линейно-квадратичных задач для соответствующих управляемых подсистем. Показано совпадение управлений как функций времени для одного и того же равновесия при разном выборе избыточной координаты, причем стабилизирующие управления являются при этом линейными функциями разных фазовых переменных. Приведены графики переходных процессов в замкнутых найденными управлениями системах. Асимптотическая устойчивость обоих положений равновесия в полной нелинейной замкнутой системе следует из ранее доказанной теоремы об асимптотической устойчивости при наличии нулевых корней характеристического уравнения, соответствующих избыточным координатам.

Ключевые слова: геометрические связи, избыточные координаты, уравнения М.Ф. Шульгина, Ball and Beam, устойчивость, стабилизация, положение равновесия
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2017, т. 27, вып. 3, с. 414-430
DOI: 10.20537/vm170310

Modeling of the Ball and Beam system dynamics as a nonlinear mechatronic system with geometric constraint

The Ball and Beam system with a nonlinear geometric constraint is considered. Two possible equilibrium positions of this system are found from the complete constraint equation. The structures of the equations of disturbed motion are analyzed in a neighborhood of the equilibrium positions, using equations without Lagrange multipliers in the form of M.F. Shul'gin. The possibility of linearization of the constraint equation is discussed. The stabilization problem is solved for every equilibrium position and two possible variants of the redundant coordinate. Stabilizing control (voltage at the armature of the drive motor) is calculated via solving linear-quadratic problems by N.N.Krasovsky's method for corresponding control subsystems. The coincidence of controls as time functions for the same equilibrium is shown for different choices of the redundant coordinate, and the stabilizing controls are linear functions of different phase variables. The graphs of transient processes in systems closed by the obtained controls are given. The asymptotic stability of both equilibrium positions in a complete nonlinear closed system follows from the previously proved theorem on asymptotic stability in the presence of zero roots of the characteristic equation corresponding to redundant coordinates.

Keywords: geometric constraints, redundant coordinate, M.F. Shul'gin's equations of motion, Ball and Beam, stability, stabilization, equilibrium
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2017, vol. 27, issue 3, pp. 414-430

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref