Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Спектральные свойства оператора Штурма-Лиувилля со спектральным параметром, квадратично входящим в граничное условие
В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.
Spectral properties of the Sturm-Liouville operator with a spectral parameter quadratically included in the boundary condition
The article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.