Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О регуляризации принципа Лагранжа и построении обобщенных минимизирующих последовательностей в выпуклых задачах условной оптимизации
Рассматривается регуляризация принципа Лагранжа (ПЛ) в выпуклой задаче условной оптимизации с операторным ограничением-равенством в гильбертовом пространстве и конечным числом функциональных ограничений-неравенств. Целевой функционал задачи не является, вообще говоря, сильно выпуклым, а на множество ее допустимых элементов, которое также принадлежит гильбертову пространству, не накладывается условие ограниченности. Получение регуляризованного ПЛ основано на методе двойственной регуляризации и предполагает использование двух параметров регуляризации и двух соответствующих условий согласования одновременно. Один из регуляризирующих параметров «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем добавке к целевому функционалу исходной задачи. Основное предназначение регуляризованного ПЛ — устойчивое генерирование обобщенных минимизирующих последовательностей, аппроксимирующих точное решение задачи по функции и по ограничениям, для целей ее непосредственного практического устойчивого решения.
On the regularization of the Lagrange principle and on the construction of the generalized minimizing sequences in convex constrained optimization problems
We consider the regularization of the Lagrange principle (LP) in the convex constrained optimization problem with operator constraint-equality in a Hilbert space and with a finite number of functional inequality-constraints. The objective functional of the problem is not, generally speaking, strongly convex. The set of admissible elements of the problem is also embedded into a Hilbert space and is not assumed to be bounded. Obtaining a regularized LP is based on the dual regularization method and involves the use of two regularization parameters and two corresponding matching conditions at the same time. One of the regularization parameters is «responsible» for the regularization of the dual problem, while the other is contained in a strongly convex regularizing addition to the objective functional of the original problem. The main purpose of the regularized LP is the stable generation of generalized minimizing sequences that approximate the exact solution of the problem by function and by constraint, for the purpose of its practical stable solving.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.