Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Голоморфное продолжение в матричный шар функций, заданных на куске его остова
Вопрос о возможности голоморфного продолжения в область функций, заданных на всей границе этой области, достаточно хорошо изучен. Представляет интерес задача описания функций, заданных на части границы, которые могут быть голоморфно продолжены в фиксированную область. В статье переформулируем рассматриваемую задачу: При выполнении каких условий можно голоморфно продолжить в матричный шар, функции заданных на части остова? Описаны области, в которые голоморфно продолжается интеграл типа Бохнера–Хуа Ло-кена для матричного шара. Получен основной результат нашей работы — критерий голоморфного продолжения в матричной шар функций, заданных на части остова матричного шара. Кратко излагаются доказательства нескольких основных результатов. Приводятся некоторые недавние достижения. Сформулированы нерешенные задачи. Результаты, полученные в этой статье, являются общими случаями результатов Л.А. Айзенберга, А.М. Кытманова, Г. Худайберганова.
Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner—Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L.A. Aizenberg, A.M. Kytmanov and G. Khudayberganov.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.