Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Задача о нормальных колебаниях вязкой стратифицированной жидкости с упругой мембраной
Исследованы нормальные колебания вязкой стратифицированной жидкости, частично заполняющей произвольный сосуд и ограниченной сверху упругой горизонтальной мембраной. При этом рассматривается скалярная модельная задача, отражающая основные особенности векторной пространственной задачи. Получено характеристическое уравнение для собственных значений модельной задачи, изучается структура спектра и асимптотика ветвей собственных значений. Высказываются предположения о структуре спектра колебаний вязкой стратифицированной жидкости, ограниченной упругой мембраной, для произвольного сосуда. Доказано, что спектр задачи дискретен, расположен в правой комплексной полуплоскости симметрично относительно вещественной оси и имеет единственную предельную точку $+\infty$. Более того, спектр определенным образом локализован в правой полуплоскости, зона локации зависит от динамической вязкости жидкости.
The problem of normal oscillations of a viscous stratified fluid with an elastic membrane
Normal oscillations of a viscous stratified fluid partially filling an arbitrary vessel and bounded above by an elastic horizontal membrane are studied. In this case, we consider a scalar model problem that reflects the main features of the vector spatial problem. The characteristic equation for the eigenvalues of the model problem is obtained, the structure of the spectrum and the asymptotics of the branches of the eigenvalues are studied. Assumptions are made about the structure of the oscillation spectrum of a viscous stratified fluid bounded by an elastic membrane for an arbitrary vessel. It is proved that the spectrum of the problem is discrete, located in the right complex half-plane symmetrically with respect to the real axis, and has a single limit point $+\infty$. Moreover, the spectrum is localized in a certain way in the right half-plane, the location zone depends on the dynamic viscosity of the fluid.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.