Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Теоремы типа Лиувилля для решений полулинейных уравнений на некомпактных римановых многообразиях
В данной работе доказано, что функция Лиувилля, ассоциированная с полулинейным уравнением $ \Delta u -g (x, u) = 0 $, тождественна нулю тогда и только тогда, когда существует только тривиальное ограниченное решение полулинейного уравнения на некомпактных римановых многообразиях. Этот результат обобщает соответствующий результат С.А. Королькова в случае стационарного уравнения Шрёдингера $ \Delta u-q (x) u = 0 $. Так же введено понятие емкости компакта, ассоцированого со стационарным уравнением Шрёдингера, и доказано, что если емкость любого компакта равна нулю, то функция Лиувилля есть тождественный ноль.
Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds
It is proved that the Liouville function associated with the semilinear equation $\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.