Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О теореме Паули в алгебрах Клиффорда нечетной размерности
В действительных алгебрах Клиффорда нечетной размерности исследуется теорема Паули. В алгебрах Клиффорда $R_{3,0}$ и $R_{5,0}$ дается алгоритм построения оператора Паули. Этот алгоритм переносится на произвольную алгебру Клиффорда нечетной размерности $R_{p,q+1}$ ($R_{p+1,q}$). Получена итерационная формула для нахождения оператора Паули. Показано, что проблема построения оператора Паули связана с проблемой делителей нуля в алгебрах Клиффорда. При построении операторов Паули используется два вида сопряжения: сопряжение Клиффорда и сопряжение «реверс». Если $p+q+1\equiv 3\pmod 4$, то при построении оператора Паули используется сопряжение Клиффорда, если $p+q+1\equiv 1 \pmod 4$, то используется сопряжение «реверс».
Pauli's theorem in Clifford algebras of odd dimension
Pauli's theorem is investigated in real Clifford algebras of odd dimension. In Clifford algebras $R_{3,0}$ and $R_{5,0}$ an algorithm for constructing the Pauli operator is given. This algorithm is transferred to an arbitrary Clifford algebra of odd dimension $R_{p,q+1}$ ($R_{p+1,q}$). An iterative formula for finding the Pauli operator is obtained. It is shown that the problem of constructing the Pauli operator is related to the problem of zero divisors in Clifford algebras. When constructing Pauli operators, two types of conjugations are used: Clifford conjugation and reverse conjugation. If $p+q+1\equiv 3 \pmod 4$, then when constructing the Pauli operator Clifford conjugation is used; if $p+q+1\equiv 1 \pmod 4$ then reverse conjugation is used.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.