Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Интегрирование уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций
В данной работе рассматривается уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Показано, что уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Штурма–Лиувилля с периодическим потенциалом, связанного с решением уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Полученные результаты позволяют применить метод обратной задачи для решения уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций.
Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions
In this paper, we consider the negative order Korteweg–de Vries equation with a self-consistent integral source. It is shown that the negative-order Korteweg–de Vries equation with a self-consistent integral source can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm–Liouville operator with a periodic potential associated with the solution of the negative order Korteweg–de Vries equation with a self-consistent integral source is determined. The obtained results make it possible to apply the inverse problem method to solve the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.