Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О тотально глобальной разрешимости эволюционного вольтеррова уравнения второго рода
Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.
On totally global solvability of evolutionary Volterra equation of the second kind
Let $H$ be a Banach space, $T>0$, $\sigma\in[1;\infty]$ and let $W[0;\tau]$, $\tau\in(0;T)$, be the scale of Banach spaces which is induced by restrictions from a space $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ be a Volterra operator (an operator with Volterra property); $f[u] \colon W\to L_\sigma(0,T;H)$ be a controlled Volterra operator depending on a control $u\in U$. We consider the equation as follows $$x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W.$$ For this equation we establish signs of totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, the analogous result which was obtained by the author formerly is developed, this time under other hypotheses, more convenient for practical usage (although in more particular statement). Separately, we consider the cases of compact embedding of spaces and continuity of the operators $\mathcal{F}$, $f[u]$ (such an approach has not been used by the author formerly), from one hand, and of local integral analogue of the Lipschitz condition with respect to that operators, from another hand. In the second case we prove also the uniqueness of solution. In the first case we use Schauder theorem and in the second case we apply the technique of solution continuation along with the time axis (id est continuation along with a Volterra chain). Finally, as an example, we consider a nonlinear wave equation in the space $\mathbb{R}^n$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.