Все выпуски
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О некоторых свойствах *-интеграла
Продолжаются исследования автора по теории правильных функций и *-интеграла. Изучается возможность представления правильной функции в виде суммы непрерывной справа и непрерывной слева функций ($rl$-представимости). Доказывается предельная теорема для *-интеграла, позволяющая приближать разрывные интегрируемую и интегрирующую функции последовательностями абсолютно непрерывных функций. Доказана новая теорема о $\delta$-корректности решения обыкновенного линейного дифференциального уравнения с обобщенными функциями в коэффициентах, определяемого с помощью квазидифференциального уравнения. Получена формула для вычисления полной вариации неопределенного *-интеграла от $\sigma$-непрерывной функции по функции ограниченной вариации, обобщающая известную формулу для полной вариации абсолютно непрерывной функции. Формула интересна и в случае неопределенного $RS$-интеграла.
On some properties of *-integral
This work continues the author's research on the theory of regulated functions and *-integral. The possibility to express a regulated function as a sum of right-continuous and left-continuous functions (called $rl$-representation) is studied. A limit theorem for the *-integral is proved. It allows approximating discontinuous integrands and integrators by sequences of absolutely continuous functions. A new result on $\delta$-correctness of the solution of an ordinary linear differential equation with generalized functions in coefficients is proved. This solution is defined via a quasi-differential equation. A formula for the total variation of an indefinite *-integral of a $\sigma$-continuous function with respect to a function of bounded variation is given. It generalizes the well-known formula for computing the total variation of an absolutely continuous function. The formula is also interesting in the case of an indefinite $RS$-integral.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.