Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
О разрешимости некоторых краевых задач для нелокального уравнения Пуассона с периодическими условиями

В настоящей работе с помощью отображений типа инволюции вводится нелокальный аналог оператора Лапласа. Для соответствующего нелокального аналога уравнения Пуассона в единичном шаре изучены новые классы краевых задач. В рассматриваемых задачах граничные условия заданы в виде связи значения искомой функции в верхней полусфере со значением в нижней полусфере. Исследуемые задачи обобщают известные периодические и антипериодические краевые задачи для круговых областей. Задачи решаются сведением их к двум вспомогательным задачам с краевыми условиями Дирихле и Неймана для нелокального аналога уравнения Пуассона. Используя известные утверждения для полученных вспомогательных задач, мы доказываем теоремы о существовании и единственности решения основных задач. Найдены точные условия разрешимости исследуемых задач, а также получены интегральные представления решений. Изучены также спектральные вопросы, связанные с периодическими задачами. Найдены собственные функции и собственные значения этих задач. Доказаны теоремы о полноте системы собственных функций в пространстве $L_2$.
On solvability of some boundary value problems for a nonlocal Poisson equation with periodic conditions
In the present paper, a nonlocal analog of the Laplace operator is introduced by means of involution-type mappings. New classes of boundary value problems are studied for the corresponding nonlocal analog of the Poisson equation in a unit sphere. In the problems under consideration, the boundary conditions are given in the form of a relation between the value of the unknown function in the upper hemisphere and the value in the lower hemisphere. The problems under study generalize the known periodic and antiperiodic boundary value problems for circular regions. The problems are solved by reducing them to two auxiliary problems with Dirichlet and Neumann boundary conditions for the nonlocal analog of the Poisson equation. Using known statements for the obtained auxiliary problems, we prove theorems on the existence and uniqueness of solutions of the main problems. Exact conditions for the solvability of the investigated problems are found, and integral representations of the solutions are obtained. Spectral issues related to periodic problems are also studied. Eigenfunctions and eigenvalues of these problems are found. The theorems on completeness of the system of eigenfunctions in the space $L_2$ are proved.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.