Текущий выпуск Выпуск 2, 2025 Том 35

Оптимальное управление длиной поперечной трещины в задаче о равновесии пластины Тимошенко с двумя пересекающимися трещинами

 pdf (238K)

Рассматривается математическая модель о равновесии упругой пластины с двумя взаимно пересекающимися трещинами. Одна из трещин описывается частью плоскости, перпендикулярной срединной плоскости пластины, а другая — задается гладкой кривой в срединной плоскости. Нелинейность задачи обусловлена условиями непроникания в виде неравенств, заданных на кривых, соответствующих трещинам. Проводится анализ зависимости решений семейства вариационных неравенств от параметра, характеризующего вариацию длины прямолинейной трещины. На основе описанного семейства задач формулируется задача оптимального управления с функционалом качества, определенным с помощью формулы Гриффитса, которая характеризует возможность развития трещины вдоль заданной траектории. При этом управление задается числовым параметром, отвечающим за длину прямолинейной трещины. Доказано существование решения для задачи оптимального управления, установлена непрерывная зависимость решений в пространстве Соболева от изменения параметра длины трещины.

Ключевые слова: вариационное неравенство, пластина Тимошенко, задача оптимального управления, условие непроникания, нелинейные граничные условия, трещина
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2025, т. 35, вып. 2, с. 247-260
DOI: 10.35634/vm250206

Optimal control of transverse crack length in the equilibrium problem of Timoshenko plate with two intersecting cracks

A mathematical model of the equilibrium of an elastic plate with two mutually intersecting cracks is considered. One of the cracks is described by a part of the plane perpendicular to the midplane of the plate, and the other is specified by a smooth curve in the midplane. The nonlinearity of the problem is due to the non-penetration conditions in the form of inequalities imposed on the curves corresponding to the cracks. An analysis is made of the dependence of solutions of a family of variational inequalities on a parameter characterizing the variation of the length of a rectilinear crack. Based on the described family of problems, an optimal control problem is formulated with a quality functional determined by the Griffiths formula, which characterizes the possibility of crack development along a given trajectory. In this case, the control is specified by a numerical parameter specifying the length of the rectilinear crack. The existence of a solution for the optimal control problem is proved, and a continuous dependence of solutions in the Sobolev space on a change in the crack length parameter is established.

Keywords: variational inequality, Timoshenko plate, optimal control problem, non-penetration condition, nonlinear boundary conditions, crack
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2025, vol. 35, issue 2, pp. 247-260

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref