Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
Конциркулярно-рекуррентные приближенно келеровы многообразия

В работе рассматриваются два конциркулярных инварианта приближенно келерова многообразия. Доказано, что приближенно келерово многообразие конциркулярно-плоско тогда и только тогда, когда первый конциркулярный инвариант равен нулю. Получена формула для вычисления второго конциркулярного инварианта и выделен подкласс приближенно келеровых многообразий, названный классом конциркулярно-паракелеровых многообразий. Конциркулярно-паракелерово многообразие нулевой скалярной кривизны изометрично комплексному евклидову пространству $\mathbb {C}^n$, снабженному стандартной эрмитовой метрикой. Класс конциркулярно-паракелеровых многообразий ненулевого постоянного типа совпадает с классом шестимерных собственных приближенно келеровых многообразий. Доказано, что конциркулярно-паракелерово приближенно келерово многообразие является римановым многообразием постоянной неотрицательной скалярной кривизны. При этом его скалярная кривизна равна нулю тогда и только тогда, когда оно является келеровым многообразием. Получена полная локальная характеризация конциркулярно-паракелеровых приближенно келеровых многообразий и конциркулярно-рекуррентных приближенно келеровых многообразий.
Concircularly recurrent nearly Kähler manifolds
In this paper, two concircular invariants of a nearly Kähler manifold are considered. It is proved that a nearly Kähler manifold is concircularly flat if and only if the first concircular invariant is zero. A formula for calculating the second concircular invariant is obtained, and a subclass of nearly Kähler manifolds is distinguished, called the class of concircular-paraKähler manifolds. A concircular-paraKähler manifold of zero scalar curvature is isometric to the complex Euclidean space $\mathbb{C}^n$ equipped with the standard Hermitian metric. The class of concircular-paraKähler manifolds of nonzero constant type coincides with the class of six-dimensional proper nearly Kähler manifolds. It is proved that a concircular-paraKähler nearly Kähler manifold is a Riemannian manifold of constant nonnegative scalar curvature. In this case, its scalar curvature is zero if and only if it is a Kähler manifold. A complete local characterization of concircular-paraKähler nearly Kähler manifolds and concircular-recurrent nearly Kähler manifolds is obtained.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.