Текущий выпуск Выпуск 4, 2025 Том 35

Построение универсальных позиционных стратегий в дифференциальной игре с нефиксированным моментом окончания

 pdf (257K)

Рассматривается дифференциальная игра двух лиц с нефиксированным моментом окончания. Особенностью игры является наличие не только целевого множества, но и линии жизни, достигая которую второй игрок получает бесконечный выигрыш. Функционал платы зависит от траектории игроков и их управлений. Частными случаями рассматриваемой дифференциальной игры являются игры поимки и быстродействия. Для рассматриваемой игры построены универсальные позиционные стратегии в предположении, что связанная с дифференциальной игрой задача Дирихле для уравнения Гамильтона–Якоби допускает вязкостное проксимальное решение. Построение универсальных стратегий опирается на понятие проксимального градиента и использует подход Красовского–Субботина. Универсальность позиционных стратегий заключается в том, что для любой начальной точки из некоторого компакта позиционная стратегия одинаково эффективна. Кроме того, доказаны теоремы об оценке гарантированных результатов игроков.

Ключевые слова: дифференциальная игра, универсальные позиционные стратегии, задача Дирихле, вязкостное решение
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2025, т. 35, вып. 4, с. 558-577
DOI: 10.35634/vm250404

The synthesis of feedback strategies in differential game with exit time

A two-player differential game with an unfixed endpoint is considered. A special feature of the game is the presence of not only a target set but also a lifeline. If the second player steers the lifeline, then the payoff equals infinity. The payoff functional depends on the trajectory of the players and their controls. Special cases of the differential game under consideration are the pursuit–evasion game and time-optimal game. Universal positional strategies are constructed for the game under consideration under the assumption that the Dirichlet problem for the Hamilton–Jacobi equation, related to the differential game, admits a viscosity proximal solution. The construction of universal strategies is based on the concept of a proximal gradient and utilizes the Krasovsky–Subbotin approach. The universality of positional strategies means that for any initial point from a compact set, the feedback strategy is equally effective. In addition, theorems on the evaluation of the guaranteed result of the players are proved.

Keywords: differential game, universal feedback strategies, Dirichlet problem, viscosity solution
Citation in English: Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2025, vol. 35, issue 4, pp. 558-577

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref