Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'вариационные неравенства':
Найдено статей: 3
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

  2. Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.

  3. Рассматривается математическая модель о равновесии упругой пластины с двумя взаимно пересекающимися трещинами. Одна из трещин описывается частью плоскости, перпендикулярной срединной плоскости пластины, а другая — задается гладкой кривой в срединной плоскости. Нелинейность задачи обусловлена условиями непроникания в виде неравенств, заданных на кривых, соответствующих трещинам. Проводится анализ зависимости решений семейства вариационных неравенств от параметра, характеризующего вариацию длины прямолинейной трещины. На основе описанного семейства задач формулируется задача оптимального управления с функционалом качества, определенным с помощью формулы Гриффитса, которая характеризует возможность развития трещины вдоль заданной траектории. При этом управление задается числовым параметром, отвечающим за длину прямолинейной трещины. Доказано существование решения для задачи оптимального управления, установлена непрерывная зависимость решений в пространстве Соболева от изменения параметра длины трещины.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref