Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.
-
Об обобщенной краевой задаче для управляемой системы с обратной связью и бесконечным запаздыванием, с. 167-185Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.
-
Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.
-
На двумерном торе построена негрубая динамическая система.
-
Вычисляется второй член асимптотики преобразования монодромии монодромной особой точки для некоторого класса векторных полей на плоскости, диаграмма Ньютона которых состоит из двух четных ребер. В таком случае главный член преобразования монодромии тождественен. Полученный результат дает достаточное условие фокуса для особой точки из рассматриваемого класса.
-
Сопоставляя реальному пространству декартову систему координат (линейное векторное пространство), И. Ньютон рассматривал его как вместилище и не наделял какой-либо внутренней структурой. Такой подход приводит к феноменологическому описанию экспериментально наблюдаемых силовых полей и вынуждает каждому силовому полю сопоставлять источник. Некорректная, однако, весьма эффективная в вопросах статики интерпретация алгебры Клиффорда в виде аналитической геометрии, получившая повсеместное признание благодаря усилиям Хевисайда, не является алгеброй в ее математическом понимании. Следствием этого является, например, отсутствие в классической механике меры (спин), наблюдаемой экспериментально.
В отличие от такого подхода в работе реальному пространству сопоставляется векторное пространство, обладающее алгеброй Клиффорда, что позволяет вводить меры, связанные с понятиями триада, четыреада, и допускают совместное рассмотрение большого количества трехмерных полей. Объектам реальности, которые обозначаются терминами «заряд», «точечная масса», сопоставляются силовые поля, объясняющие результаты экспериментов, лежавших в основе квантовой механики в прошлом веке. Особенности силовых полей отнесены к особенностям метрики и допускают существование статически устойчивых образований без каких-либо дополнительных постулатов. -
Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.
-
Стабильность вполне управляемых систем, с. 81-93Предметом настоящей работы является вопрос о стабильности вполне управляемых систем, заданных на гладком многообразии. Известно, что множества управляемости симметричных систем порождают сингулярные слоения. В случае, когда множества управляемости имеют одинаковую размерность, возникает регулярное слоение. Таким образом, возникает возможность применения методов теории слоений в задачах теории управления. В данной работе излагаются некоторые результаты авторов о возможности применения теорем о стабильности слоев для задачи о стабильности вполне управляемых систем и для изучения геометрии множества достижимости. Гладкость всюду в работе будет означать гладкость класса $C^{\infty}.$
-
Рассматриваются так называемые стандартные управляемые системы, это системы дифференциальных уравнений, заданных на гладких многообразиях конечной размерности, равномерно непрерывные и ограниченные по времени на числовой прямой и локально липшицевы по фазовым переменным. Кроме того, предполагается, что задано компактное множество, задающее геометрические ограничения на допустимые управления и, кроме того, выполнено условие невырожденности, означающее, что для каждой точки фазового многообразия и всех моментов времени найдется управление, при котором значение векторного поля содержится в евклидовом пространстве, касательном к фазовому многообразию в заданной точке.
При помощи модифицированного метода функции Ляпунова и построения омега-предельного множества соответствующей динамической системы сдвигов сформулированы утверждения о существовании ограниченных на положительной полуоси допустимых управляемых процессов и утверждение о равномерной локальной управляемости соответствующего магистрального процесса.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.