Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'векторный анализ':
Найдено статей: 7
  1. Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.

  2. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

  3. Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.

  4. В настоящей статье рассматривается краевая задача для дифференциальных уравнений типа Ланжевена с дробной производной Капуто в банаховом пространстве. Предполагается, что нелинейная часть уравнения представляет из себя отображение, подчиняющееся условиям типа Каратеодори. Уравнения такого типа обобщают уравнения движения в различного рода средах, например вязкоупругих, или в средах, где сила сопротивления выражается с помощью дробной производной. Для разрешения поставленной задачи будет использоваться теория дробного математического анализа, свойства функции Миттаг-Леффлера, а также теория мер некомпактности и уплотняющих операторов. Идея решения состоит в следующем: исходная задача сводится к задаче о существовании неподвижных точек соответствующего разрешающего интегрального оператора в пространстве непрерывных функций. Для доказательства существования неподвижных точек разрешающего оператора используется теорема типа Б.Н. Садовского о неподвижной точке. Для этого мы показываем, что разрешающий интегральный оператор является уплотняющим относительно векторной меры некомпактности в пространстве непрерывных функций и преобразует замкнутый шар в этом пространстве в себя.

  5. Проведено математическое моделирование конвективно-кондуктивно-радиационного теплообмена в кубической полости, заполненной прозрачной для излучения средой. Анализируемый объект представлял собой замкнутый объем с теплопроводными стенками конечной толщины, имеющими диффузно-серые внутренние поверхности. Внешние поверхности двух вертикальных стенок являлись изотермическими, а остальные внешние грани области решения - адиабатическими. Краевая задача сформулирована в безразмерных переменных «векторный потенциал-вектор завихренности-температура» в приближении Буссинеска и с учетом диатермичности сплошной среды. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Сформулированная нестационарная краевая задача реализована численно методом конечных разностей в широком диапазоне изменения числа Рэлея, коэффициента теплопроводности материала ограждающих твердых стенок и коэффициента излучения. Получены корреляционные соотношения для средних конвективного и радиационного чисел Нуссельта на характерной внутренней границе раздела сред. Проведено сравнение полученных результатов с данными двумерной модели. Установлено, что при рассмотрении трехмерной задачи можно оценить формирование интенсивных поперечных перетоков среды со стороны двух вертикальных поверхностей, которые отсутствуют в двумерной постановке. Показано, что решение задач конвективно-радиационного теплопереноса в сопряженной постановке приводит к существенным изменениям в распределениях локальных и интегральных характеристик по сравнению с несопряженной моделью, что в первую очередь связано с более корректным описанием механизма теплового излучения в диатермичных средах за счет учета теплопроводности ограждающих твердых стенок.

  6. Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.

  7. Обсуждается проблема корректного использования программных пакетов, в которых реализованы методы решения некорректных задач. К некорректным задачам относится большинство задач обработки экспериментальных данных. При использовании методов решения некорректных задач существует проблема неединственности решения, которая решается путем введения априорной информации. Получение априорной информации возможно разными способами, но количественные оценки предполагают использование дополнительных методов анализа данных. Очевидно, что дополнительные методы не должны быть сложнее и трудозатратнее основного метода обработки данных. На примере использования программы анализа данных электроразведки RES3DINV продемонстрирована роль априорной информации для получения достоверных результатов. Программный пакет RES3DINV применяется для построения модели грунта по измеренным значениям удельного сопротивления методами электроразведки. При использовании реализованного в программном пакете метода инверсии необходимо задавать входные параметры, характеризующие геометрические размеры объекта аномального сопротивления, которые априори, как правило, неизвестны. На модельных объектах продемонстрировано как влияет некорректное задание входных параметров на результат интерпретации данных. Показано, что в качестве способа получения априорной информации можно использовать метод векторного анализа. Этот метод позволяет получать оценки геометрических параметров аномального объекта и не требует больших временных и ресурсных затрат, и может быть использован непосредственно на месте полевых экспериментальных измерений.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref