Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об инвариантных множествах и хаотических решениях разностных уравнений со случайными параметрами, с. 238-247Рассматривается вероятностная модель, заданная разностным уравнением $$x_{n+1}=f(\omega_n,x_n), \quad (\omega_n,x_n)\in \Omega\times [a,b], \quad n=0,1,\dots, \qquad\qquad(1)$$ где $\Omega$ - заданное множество с сигма-алгеброй подмножеств $\widetilde{\mathfrak A},$ на которой определена вероятностная мера $\widetilde \mu;$ $\mu$ - продолжение меры $\widetilde \mu$ на сигма-алгебру, порожденную цилиндрическими множествами. Исследуются инвариантные множества и аттракторы уравнения со случайными параметрами $(1).$ Получены условия, при которых заданное множество является максимальным аттрактором. Показано, что внутри инвариантного множества $A\subseteq [a,b]$ могут существовать решения, хаотические с вероятностью единица. Это происходит в случае, когда существуют $m_i\in\mathbb N$ и множества $\Omega_i\subset\Omega$ такие, что $\mu(\Omega_i)>0,$ $i=1,2,$ и ${\rm cl} \,f^{m_1}(\Omega_1,A)\cap \,{\rm cl} f^{m_2}(\Omega_2,A)=\varnothing.$ Решения, хаотические с вероятностью единица, также наблюдаются в случае, когда уравнение $(1)$ либо не имеет ни одного цикла, либо все циклы отталкивающие с вероятностью единица. Результаты работы проиллюстрированы на примере непрерывно-дискретной вероятностной модели динамики изолированной популяции; для данной модели исследованы различные динамические режимы развития, которые имеют определенные отличия от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных физических системах.
-
Данная работа посвящена исследованию инвариантных множеств управляемых систем с импульсными воздействиями, параметризованных метрической динамической системой. Такими системами описываются различные стохастические модели популяционной динамики, экономики, квантовой электроники и механики. Получены условия существования инвариантных множеств для множества достижимости системы и условия асимптотического приближения решений системы к заданному множеству. Результаты работы проиллюстрированы на примерах развития популяции, подверженной промыслу, когда моменты и размеры промысловых заготовок являются случайными величинами. Для данных моделей исследованы различные динамические режимы развития, которые существенно отличаются от режимов детерминированных моделей и более полно отображают процессы, происходящие в реальных экологических системах. Получены условия, при которых размер популяции находится в заданном множестве, и условия асимптотического вырождения популяции с вероятностью единица, также приведены оценки для математического ожидания и дисперсии времени вырождения популяции.
-
Разработана новая вероятностная модель, которая применяется для описания динамики роста изолированной популяции. Найдены условия асимптотического вырождения с вероятностью единица для популяции, развитие которой задано управляемой системой со случайными коэффициентами, получены также условия существования управления, приводящего популяцию к вырождению. Исследуется динамический режим развития популяции, находящейся на грани исчезновения; это означает, что с вероятностью единица размер данной популяции окажется меньше минимального критического значения, после которого биологическое восстановление популяции невозможно. Результаты работы проиллюстрированы на примере развития двуполой популяции.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.