Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'временная шкала':
Найдено статей: 7
  1. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.

  2. Пусть $H$ — банахово пространство, $T>0$, $\sigma\in[1;\infty]$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T)$, индуцированная сужениями из пространства $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ — вольтерров оператор; $f[u]\colon W\to L_\sigma(0,T;H)$ — управляемый вольтерров оператор, зависящий от управления $u\in U$. Рассматривается уравнение вида $$ x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W. $$ Для этого уравнения устанавливаются признаки тотально (по множеству допустимых управлений) глобальной разрешимости при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее, на этот раз при других, более удобных для практического использования условиях (хотя и в более частной постановке). Отдельно рассматриваются случаи: 1) компактного вложения пространств и непрерывности операторов $\mathcal{F}$, $f[u]$ (такой подход автором ранее не использовался); 2) выполнения локально-интегрального аналога условия Липшица относительно указанных операторов. Во втором случае доказывается также единственность решения. В первом случае применяется теорема Шаудера, во втором — технология продолжения решения по времени, то есть продолжения вдоль вольтерровой цепочки. В качестве примера рассматривается нелинейное волновое уравнение в пространстве $\mathbb{R}^n$.

  3. В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается задача преследования группой преследователей одного убегающего с равными возможностями всех участников, описываемая в заданной временной шкале $T$ системой вида $$z_i^{\Delta} = u_i - v,$$ где $f^{\Delta}$ - $\Delta$-производная функции $f$ во временной шкале $T$. Множество допустимых управлений - шар радиусом единица с центром в начале координат. Терминальные множества - начало координат. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Получены достаточные условия разрешимости задач преследования и уклонения. При исследовании в качестве базового используется метод разрешающих функций.

  4. Рассматривается задача Коши для уравнений Навье–Стокса над полосой ${\mathbb R}^3 \times [0,T]$ с временем $T>0$ в пространственно-периодической постановке. Доказывается, что задача индуцирует открытые инъективные отображения ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$, где $B^{s}_1$, $B^{s-1}_2$ суть элементы шкал специально построенных функциональных пространств Бохнера–Соболева, параметризованных индексом гладкости $s \in \mathbb N$. Наконец, мы доказываем, что отображение ${\mathcal A}_s$ сюръективно тогда и только тогда, когда прообраз ${\mathcal A}_s ^{-1}(K)$ любого предкомпактного множества $K$ из образа отображения ${\mathcal A}_s$ ограничен в пространстве Бохнера $L^{\mathfrak s} ([0,T], L ^{{\mathfrak r}} ({\mathbb T}^3))$ с показателями Ладыженской–Проди–Серрина ${\mathfrak s}$, ${\mathfrak r}$.

  5. Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.

    Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.

  6. В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается линейная задача преследования группой преследователей одного убегающего, описываемая в заданной временной шкале $\mathbb{T}$ уравнениями вида \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} где $z_i^{\Delta}$ — $\Delta$-производная функций $z_i$ во временной шкале $\mathbb{T}$, $a$ — произвольное число, не равное нулю. Множество допустимых управлений для каждого участника представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — заданные выпуклые компакты в $\mathbb R^k$. Преследователи действуют согласно контрстратегиям на основе информации о начальных позициях и предыстории управления убегающего. В терминах начальных позиций и параметров игры получено достаточное условие поимки. Для случая задания временной шкалы в виде $\mathbb T = \{\tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ найдены достаточные условия разрешимости задач преследования и уклонения. При исследовании в обоих случаях в качестве базового используется метод разрешающих функций.

  7. Доказано неравенство Ляпунова для произвольной временной шкалы.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref