Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'геометрическая разность множеств':
Найдено статей: 2
  1. Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.

  2. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref