Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об одном подклассе однолистных функций с отрицательными коэффициентами, заданном линейным оператором, с. 306-317В работе вводится и исследуется подкласс $A_{n} (m,\beta,p,q,\lambda)$ однолистных функций с отрицательными коэффициентами, определяемый новым линейным оператором $J^\lambda$ в открытом единичном круге $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. Основной задачей является изучение следующих свойств и характеристик: оценки коэффициентов, теоремы искажения, теоремы о замыкании, окрестность функции, радиусы звездообразности, выпуклости и почти выпуклости функций, принадлежащих классу $A_{n} (m,\beta,p,q,\lambda)$.
-
Асимптотическое распределение времени попадания для критических отображений на окружности, с. 365-383Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.
-
В работе рассматривается следующая краевая задача для обобщенного уравнения Коши-Римана в единичном круге G={z∈C: |z|<1}: ∂¯zw+b(z)¯w=0, ℜw=g на ∂G, ℑw=h в точке z0=1. Коэффициент b(z) выбирается из некоторого множества SP, построенного с помощью весов, причем SP⊈L2, SP⊄Lq, q>2. В свою очередь, краевое условие g выбирается из пространства, порожденного модулем непрерывности μ, обладающим некоторыми специальными свойствами. Показывается, что задача имеет единственное решение w=w(z) в круге G, причем w∈C(¯G). Кроме того, вне точки z=0 поведение решения задачи определяется тем же самым модулем непрерывности μ, что означает, что для решения задачи отсутствует «логарифмический эффект».
-
Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.
-
Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.
-
На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.
-
Структурная устойчивость логарифмических спиралей в задачах управления с особой экстремалью второго порядка, с. 117-128Исследуется структурная устойчивость логарифмических спиралей в обобщении задачи Фуллера на случай управления из круга. Рассматривается малое возмущение относительно действия группы симметрий невозмущенной задачи. Для возмущенной задачи показано, что в окрестности особой экстремали второго порядка сохраняются экстремали в виде логарифмических спиралей. Построенные экстремали приходят на особую экстремаль за конечное время, при этом управления совершают бесконечное число оборотов вдоль окружности.
-
Приближенный метод решения задачи конформного отображения произвольного многоугольника на единичный круг, с. 107-129В статье разработано приближенно-аналитическое решение задачи конформного отображения внутренних точек произвольного многоугольника на единичный круг. На предварительном этапе задача конформного отображения сформулирована в виде краевой задачи (задача Шварца). Последняя сведена к решению интегрального уравнения Фредгольма второго рода с ядром типа Коши относительно неизвестной комплексной функции плотности на границе области с последующим вычислением интеграла Коши. Разработанное приближенно-аналитическое решение основано на разложении ядра Коши в системе многочленов Лежандра первого и второго рода. Выполнена априорная и апостериорная оценки сходимости и точности заданного решения. Определены экспоненциальная сходимость решения в $L_2\left([0,1]\right)$ и полиномиальная в $C\left([0,1]\right)$. Для наглядного сравнения результативности разработанного решения приведены расчеты на тестовых примерах.
-
Работа посвящена проблеме построения наилучшего аппроксимирующего покрытия ограниченного плоского множества M конечным набором кругов одного радиуса. Проблема считается решенной, если удалось построить наилучшую в смысле хаусдорфовой метрики n-сеть рассматриваемого множества. В работе приведены достаточные условия оптимальности n-сети, предложен алгоритм построения наилучших сетей на основе разбиения M на подмножества и отыскания их чебышевских центров. Эффективность созданного алгоритма показана на примерах множеств с различной геометрией.
-
Решается задача Дирихле для голоморфных функций в пространствах с заданным модулем непрерывности: доказывается существование голоморфной в круге функции по предельным значениям ее действительной части на границе круге.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.