Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'глобальная скаляризуемость':
Найдено статей: 2
  1. Доказано, что линейная управляемая система $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad (1) $$ с коэффициентами в форме Хессенберга при достаточно широких условиях на коэффициенты обладает свойством равномерной полной управляемости в смысле Калмана. Показана существенность для некоторых полученных достаточных условий. Установлены следствия для квазидифференциальных уравнений. Исследуется задача о глобальном управлении асимптотическими инвариантами системы $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \qquad \qquad \qquad \qquad (2) $$ полученной замыканием системы $(1)$ обратной связью $u=Ux$. В известных результатах С.Н. Поповой ослабляются условия на коэффициенты. Для системы $(2)$ с коэффициентами в форме Хессенберга, с помощью результатов С.Н. Поповой, получены достаточные условия глобальной скаляризуемости и глобальной управляемости показателей Ляпунова, а в случае когда $A(\cdot)$ и $B(\cdot)$ - $\omega$-периодические и достаточные условия глобальной ляпуновской приводимости.

  2. Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами

    $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad(1) $$

    Управление в системе $(1)$ строится в виде линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы

    $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad(2)$$

    введено понятие равномерной глобальной квазидостижимости, которое является ослаблением равномерной глобальной достижимости - свойства системы $(2)$, позволяющего за счет выбора функции $U(t)$, $t\geqslant 0$, для матрицы Коши $X_U(t,s)$ этой системы обеспечить выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N$, $\det H_k>0$. Доказано, что из равномерной глобальной квазидостижимости системы $(2)$ следует глобальная скаляризуемость этой системы, то есть существование для произвольной наперед заданной локально интегрируемой и интегрально ограниченной скалярной функции $p=p(t)$, $t\geqslant0$, такой измеримой и ограниченной матричной функции $U=U(t)$, $t\geqslant0$, при которой система $(2)$ асимптотически эквивалентна системе скалярного типа $\dot z=p(t)z$, $z\in\mathbb{R}^n,\ t\geqslant0$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref