Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.
-
Неизотермическое ползущее течение вязкоупругой жидкости со свободной поверхностью при формовании волокон, с. 101-108Работа посвящена моделированию ползущего движения вязкоупругой жидкости со свободной поверхностью, реализующейся при входе полимерной жидкости в формующий канал и выходе из него. Движение жидкости описывается уравнениями сохранения массы, импульса и энергии, дополненное определяющим реологическим уравнением состояния среды Гиезекуса. На основе метода конечных элементов разработан устойчивый численный алгоритм решения задачи. Проведены численные исследования по определению формы выходной струи для различных режимов течения и формы насадки. Исследована картина распределения скоростей жидкости, давления, напряжений и температуры при увеличении степени нагрева стенки формующего канала. Получены численные результаты зависимости эффекта разбухания полимерной жидкости от параметров реологической модели и температурных факторов.
-
Рассматривается движение частиц вязкой несжимаемой жидкости, вызванное распространением по свободной поверхности волны малой амплитуды. Получены уравнения движения жидких частиц при наличии бегущей или стоячей волны на поверхности бесконечно глубокого слоя. При распространении бегущей волны траектории имеют вид спирали, центр которой соответствует состоянию покоя. Влияние вязкости проявляется как в уменьшении амплитуды колебаний со временем, так и в отличии формы траекторий частиц, находящихся вблизи свободной поверхности и при заглублении. В случае стоячей волны движение каждой частицы происходит по отрезкам, длина которых с течением времени уменьшается. Направление движения изменяется от вертикального в пучностях до горизонтального в узлах.
-
Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.
-
Рассматривается движение жидкости, вызванное взаимодействием набегающей гравитационной волны, распространяющейся по свободной поверхности слоя вязкой несжимаемой жидкости, с круговым цилиндром, имеющим вертикальные образующие. Нелинейная краевая задача, описывающая такое движение, сведена к задаче для вертикальной компоненты вектора скорости, которая представляется в виде суммы потенциальной и вихревой составляющей. Получено решение данной задачи для случая колебаний малой амплитуды. Проведено сравнение поля скоростей для вязкой и идеальной жидкости.
-
Данная работа посвящена экспериментальному определению присоединенных масс тел, погруженных в жидкость полностью или частично. В работе приводятся схема экспериментальной установки, методика проведения эксперимента и математическая модель, положенная в основу методики. Метод определения присоединенной массы основан на буксировке тела при известной тяговой силе. Из теории известно, что понятие присоединенной массы возникает в предположении потенциальности обтекания тела жидкостью. В связи с этим мы дополнительно проводим PIV-визуализацию потоков, генерируемых буксируемым телом, и определяется участок траектории, на котором обтекание можно считать потенциальным. Для верификации методики проведен ряд экспериментов по определению присоединенных масс эллипсоида вращения. Результаты измерений согласуются с известными справочными данными. На основе разработанной методики определены присоединенные массы безвинтового надводного робота.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.