Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'динамические эффекты':
Найдено статей: 6
  1. Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.

  2. Рассмотрена нелинейная задача о распространении волн по свободной поверхности слоя вязкой несжимаемой жидкости бесконечной глубины в плоском случае. С помощью метода малого параметра данная нелинейная задача раскладывается на задачи в первых двух приближениях, которые последовательно разрешаются. Получены нелинейные выражения для компонент вектора скорости, динамического давления и формы свободной поверхности. Изучается движение частиц вязкой жидкости, вызванное распространением волны по свободной поверхности. Установлено, что вязкость жидкости оказывает существенное влияние на форму траекторий жидких частиц, которое проявляется как в уменьшении амплитуды колебаний с течением времени, так и в отличии траекторий вблизи свободной поверхности и при заглублении. Исследован нелинейный эффект Стокса, который заключается в наличии приповерхностного течения.

  3. Исследуется нерезонансная эволюция угла наклона оси вращения гипотетической экзо-Земли в гравитационном поле звезды, спутника планеты (экзо-Луны) и внешней планеты (экзо-Юпитера). Считаем, что экзо-Земля является динамически симметричным твердым телом $(A = B)$, эллипсоид инерции которого близок к сфере. Полагаем также, что обе планеты движутся по кеплеровским эллипсам вокруг звезды. Траектория спутника — эволюционирующий эллипс с фокусом в экзо-Земле: эволюционирует долгота восходящего узла орбиты спутника на плоскости «эклиптики» и аргумент перицентра. В предположении, что частоты орбитального эллиптического движения есть величины порядка единицы, получены канонические усредненные уравнения возмущенных колебаний оси вращения экзо-Земли, содержащие параметры, медленно меняющиеся со временем. В предположении, что массы планет малы по сравнению с массой звезды, получены в первом приближении метода малого параметра упрощенные уравнения колебаний оси вращения планеты. Интеграция этих уравнений дает явную зависимость угла наклона оси вращения экзо-Земли от времени. Показано, что гравитационные моменты от внешней планеты формируют вековую, долгопериодическую моду колебаний с частотой, равной частоте невозмущенной прецессии оси собственного вращения экзо-Земли. Влияние экзо-Луны сводится к появлению короткопериодических гармоник с частотой, близкой к частоте прецессии долготы восходящего узла орбиты экзо-Луны. Проведены расчеты для двух экзопланетных систем: для системы, подобной Солнечной, и для планетной системы 7 Canis Majoris. Описан эффект дестабилизации (стабилизации) колебаний по углу нутации оси вращения экзо-Земли под действием гравитационных моментов от экзо-Луны и экзо-Юпитера.

  4. Исследованы нормальные колебания вязкой стратифицированной жидкости, частично заполняющей произвольный сосуд и ограниченной сверху упругой горизонтальной мембраной. При этом рассматривается скалярная модельная задача, отражающая основные особенности векторной пространственной задачи. Получено характеристическое уравнение для собственных значений модельной задачи, изучается структура спектра и асимптотика ветвей собственных значений. Высказываются предположения о структуре спектра колебаний вязкой стратифицированной жидкости, ограниченной упругой мембраной, для произвольного сосуда. Доказано, что спектр задачи дискретен, расположен в правой комплексной полуплоскости симметрично относительно вещественной оси и имеет единственную предельную точку $+\infty$. Более того, спектр определенным образом локализован в правой полуплоскости, зона локации зависит от динамической вязкости жидкости.

  5. Болсинов А.В., Борисов А.В., Мамаев И.С.
    Методы компьютерного моделирования в неголономных системах, с. 186-191

    В работе рассматривается проблема гамильтонизации неголономных систем, как интегрируемых, так и неинтегрируемых. Этот вопрос является важным при качественном исследовании этих систем и позволяет определить возможные динамические эффекты. Первая часть работы посвящена представлению в конформно гамильтоновой форме интегрируемых систем. Во второй части доказывается существование конформно гамильтонового представления в окрестности периодического решения для произвольной (в том числе интегрируемой) системы, сохраняющей инвариантную меру. Общие конструкции всюду иллюстрируются примерами из неголономной механики.

  6. В работе рассматривается динамика кельтского камня, моделируемая тяжелым уравновешенным эллипсоидом вращения, катящимся без проскальзывания по неподвижной горизонтальной плоскости. При этом центральный эллипсоид инерции тоже представляет собой эллипсоид вращения. При наличии углового смещения между двумя эллипсоидами (характеризующим динамическую несимметрию тела) наблюдаются новые динамические эффекты, которые родственны реверсу в движении кельтских камней. Однако, в отличии от традиционной модели кельтского камня, представляющего собой усеченный двухосный параболоид, в рассматриваемой постановке возможны движения, являющиеся суперпозицией реверса (смена на противоположное направление вращения) и переворота (смена на противоположные оси вращения). При этом указанные реверс и переворот, при надлежащих энергиях и распределениях масс, могут повторяться неоднократно. Возможны также движения, представляющие собой только многократный переворот или реверс.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref