Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О свойстве равномерной полной управляемости линейной управляемой системы с дискретным временем, с. 53-63Исследовано свойство равномерной полной управляемости (по Калману) линейной управляемой системы с дискретным временем
$$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$
Установлено, что если система $(1)$ равномерно вполне управляема, то матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$ (т.е. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$), а матрица $B(\cdot)$ ограничена на $\mathbb{N}_0$. Доказано, что система $(1)$ равномерно вполне управляема тогда и только тогда, когда при некотором $\vartheta\in \mathbb N$ при всех $\tau\in\mathbb N_0$ для матриц
$$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$
$$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$
выполнены неравенства $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ с некоторыми положительными $\alpha_i$ и $\beta_i$. На основании этого утверждения доказан критерий равномерной полной управляемости системы $(1)$, аналогичный критерию Тонкова равномерной полной управляемости систем с непрерывным временем: система $(1)$ $\vartheta$-равномерно вполне управляема тогда и только тогда, когда матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$; матрица $B(\cdot)$ ограничена на $\mathbb N_0$; существует число $\ell=\ell(\vartheta)>0$ такое, что для любого $\tau\in\mathbb{N}_0$ и для любого $x_1\in\mathbb{R}^n$ существует управление $u(t)$, $t\in[\tau,\tau+\vartheta)$, которое переводит решение системы $(1)$ из точки $x(\tau)=0$ в точку $x(\tau+\vartheta)=x_1$ при этом выполнено неравенство $|u(t)|\leqslant \ell |x_1|$, $t\in[\tau,\tau+\vartheta)$.
-
В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.
-
Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является приведение фазовых координат системы в ноль за конечное время. Цель убегающего - помешать этому. Получены достаточные условия на параметры игры для существования окрестности нуля, из которой происходит поимка, то есть приведение системы в ноль. Также доказано, что независимо от выбора действий убегающего время, необходимое преследователю для перевода системы в ноль, стремится к нулю с приближением начального положения к нулю.
-
О рассеянии и квазиуровнях в модели SSH, с. 257-266Топологический изолятор - особый тип материала, который внутри («в объеме») представляет собой изолятор, а на поверхности проводит электрический ток. Простейшим топологическим изолятором является конечная цепочка атомов в полиацетилене. Тематика топологических изоляторов в рамках физики твердого тела очень актуальна в последнее время. Большой интерес в физической литературе к топологическим изоляторам (а также похожим на них в смысле топологии сверхпроводящим системам) в значительной степени вызван наличием связи, «соответствием» между «объемом» и «границей». В данной статье рассматривается дискретная модель SSH (Su-Schrieffer-Heeger) для полиацетилена, описывающая электрон в одномерной цепочке атомов с двумя чередующимися амплитудами перехода на соседний атом. Найдены резольвента и спектр рассматриваемого оператора. Исследованы квазиуровни (собственные значения и резонансы) в случае малого потенциала. Кроме того, найдено решение уравнения Липпмана-Швингера и получены асимптотические формулы для вероятностей прохождения и отражения в случае малого возмущения.
-
Об одной нелинейной задаче преследования с дискретным управлением и неполной информацией, с. 111-118Рассматривается дифференциальная игра двух лиц, описываемая системой вида $\dot x = f(x, u) + g(x, v)$, $x \in \mathbb R^k$, $u \in U$, $v \in V$. Множеством значений управлений преследователя является конечное подмножество фазового пространства. Множеством значений управлений убегающего является компактное подмножество фазового пространства. Целью преследователя является поимка, то есть приведение системы в любую заданную окрестность начала координат. Получены достаточные условия разрешимости задачи преследования в классе кусочно-программных стратегий преследователя. Также доказано, что независимо от действий убегающего время поимки стремится к нулю, если начальное состояние приближается к началу координат.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.