Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'закон трения Кулона':
Найдено статей: 2
  1. Предложен новый итерационный метод решения статических контактных задач двух деформируемых тел, основанный на поочередном решении задачи одностороннего контакта для первого тела и задачи линейной теории упругости с естественными граничными условиями для второго тела. Выполнение условий закона трения Кулона достигнуто за счет коррекции касательных узловых сил в зоне скольжения и задания кинематических граничных условий в зоне сцепления на контактной границе первого тела. Постепенное выравнивание контактных нагрузок на взаимодействующих поверхностях осуществляется в процессе решения задачи линейной теории упругости для второго тела. Преимущества метода продемонстрированы на решении ряда модельных примеров, включая односторонний контакт линейно-упругой пластины с твердым основанием, двухсторонний контакт вдавливания деформируемого блока в основание, задачу Герца о контакте двух деформируемых цилиндров и др. Разработанный метод применим для решения контактных задач с плоскими и криволинейными границами взаимодействия.

  2. Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref