Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'звездная динамика':
Найдено статей: 4
  1. Давыденко А.А.
    Численное решение задачи Бока, с. 59-64

    Численно исследуются орбиты звезд скопления, обращающегося в плоскости Галактики по круговой орбите (задача Бока). В качестве модели потенциала скопления используется модель Шустера–Пламмера. Рассматривается влияние начальных условий на характер финальных движений, в частности на возможность вылета звезды из скопления. Произведен массовый расчет орбит звезд для различных начальных значений энергии и момента импульса относительно скопления. Оценены вероятности вылета звезды из скопления.

  2. Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.

  3. Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.

    Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.

  4. Проскурин С.А., Осипков Л.П.
    Орбиты далеких спутников звезд, с. 116-126

    Численно исследовано плоское движение материальной точки в поле точечной массы (звезды) и Галактики. Для потенциала Галактики принималось приливное приближение. Уравнения движения интегрировались на интервале времени до 60/√A(A-B) (A, B - коэффициенты Оорта). Частица считалась улетающей, если она удалялась от звезды на расстояние, превышающее 2 расстояния от точки либрации. У остающихся частиц оскулирующие эксцентриситеты или уменьшались, или оставались в среднем (по времени) неизменными. Показана зависимость доли орбит разного типа от начальных условий.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref