Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'игры в нормальной форме':
Найдено статей: 2
  1. Бельских Ю.А., Жуковский В.И., Самсонов С.П.
    Альтруистическое равновесие (по Бержу) в модели дуополии Бертрана, с. 27-45

    В 1883 г. французский математик Жозеф Луи Франсуа Бертран (1822-1900) построил модель ценовой конкуренции на олигопольном рынке, на котором фирмы конкурируют между собой, меняя цену продукции. Заметим, что такая модель не «блистала новизной», ибо ровно на 45 лет раньше тоже французский экономист, философ и математик Антуан Огюст Курно (1801-1877) в «Исследовании математических принципов теории богатства» в разделе 7 «О конкуренции производителей» рассмотрел частный случай олигополии – дуополию (при которой участвуют только два производителя). В ней уже математическая модель основывалась на том, что оба производителя выбирают объем поставляемой продукции, цена же варьируется в результате равновесия между спросом и предложением. Рыночная цена устанавливается на том же уровне, на котором покупателями будет предъявлен спрос на весь «выкинутый на рынок» товар. Однако Бертран основывался на более естественном поведении продавца, именно на выборе им цены, а не количества «выброшенного» на рынок товара, как у Курно.
    Заметим, что покупатели обычно рассматривают продукцию одинакового назначения разных фирм как разные товары. Поэтому будем считать, что на рынок каждая фирма выходит со своим товаром, причем все эти товары взаимозаменяемы.
    Математическая модель дуополии Бертрана представлена бескоалиционной игрой двух лиц в нормальной форме. Для нее формализуется два вида равновесия: по Бержу (РБ) и по Нэшу (РН).
    Предполагается, что:
    $a)$ максимальная цена и себестоимость у обоих игроков совпадают (что естественно для рынка одного товара);
    $b)$ запрещена коалиция из двух игроков (в этом – бескоалиционный характер игры);
    $c)$ цена больше себестоимости, ибо в противном случае продавцам (игрокам) вряд ли стоит появляться на рынке.
    В предлагаемой читателю статье для почти всех значений параметров модели установлен конструктивный способ выбора конкретного равновесия (РБ или РН) в зависимости от установившейся на рынке максимальной цены продукта.

  2. Жуковский В.И., Жуковская Л.В., Кудрявцев К.Н., Ларбани М.
    Строгие коалиционные равновесия в играх при неопределенности, с. 189-207

    В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref