Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
-
О равномерной глобальной достижимости двумерных линейных систем с локально интегрируемыми коэффициентами, с. 178-192Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$
-
Проблема голоморфного продолжения функций, определенных на границе области, в эту область актуальна в многомерном комплексном анализе. Она имеет долгую историю, начиная с работ Пуанкаре и Гартогса. В статье рассматриваются непрерывные функции, определенные на границе ограниченной области $ D $ в $ \mathbb C ^ n $, $ n> 1 $, с кусочно-гладкой границей и обладающие обобщенным граничным свойством Мореры вдоль семейства комплексных прямых, которые пересекают границу области. Свойство Мореры состоит в том, что интеграл заданной функции равен нулю по пересечению границы области с комплексной прямой. Показано, что такие функции голоморфно продолжаются в область $ D $. Для функций одной комплексной переменной свойство Мореры, очевидно, не влечет голоморфного продолжения. Поэтому эту проблему следует рассматривать только в многомерном случае $ (n> 1) $. Основным методом изучения таких функций является метод многомерных интегральных представлений, в частности интегрального представления Бохнера-Мартинелли.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
-
Матричный шар третьего типа и обобщенный шар Ли, связанные с классическими областями, играют важную роль в теории функций многих комплексных переменных. В данной работе вычислены объемы матричного шара третьего типа и обобщенного шара Ли. Полные объемы этих областей необходимы для нахождения ядер интегральных формул для этих областей (ядра Бергмана, Коши-Сегё, Пуассона и т. д.). Кроме того, он используется для интегрального представления функции, голоморфной на этих областях, в теореме о среднем значении и других важных понятиях. Результаты, полученные в этой статье, являются общим случаем результатов Хуа Ло-кена, и его результаты в частных случаях совпадают с нашими результатами.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.
-
В работе исследуются нелокальные краевые задачи со смещением и разрывными условиями сопряжения на линии изменения типа для модельного нагруженного уравнения смешанного гиперболо-параболического типа. В параболической области уравнение представляет собой уравнение дробной диффузии, в гиперболической - характеристически нагруженное волновое уравнение. Единственность решения исследуемых задач при определенных условиях на коэффициенты задачи доказывается методом Трикоми. Существование решения задач сводится к решению интегрального уравнения Фредгольма второго рода относительно следа искомого решения на линии изменения типа. Однозначная разрешимость интегрального уравнения следует из единственности решения задач. После решения интегрального уравнения решение задач сводится к решению первой краевой задачи для уравнения дробной диффузии в параболической области и решению задачи Коши для неоднородного волнового уравнения в гиперболической. Выписаны формулы представления решений исследуемых задач в параболической и гиперболической областях.
-
Бесконечные сети Шрёдингера, с. 640-650Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.
-
О разрешимости краевых задач Дирихле и Неймана для уравнения Пуассона с множественной инволюцией, с. 651-667В пространстве $R^l$, $l\geq 2$, рассматриваются преобразования типа инволюции. Исследуются свойства матриц этих преобразований. Определена структура рассматриваемой матрицы и доказано, что матрица этих преобразований определяется элементами первой строки. Доказана также симметричность исследуемой матрицы. Кроме того, в явном виде найдены собственные векторы и собственные значения рассматриваемой матрицы. Найдена также обратная матрица и доказано, что обратная матрица имеет такую же структуру, как и основная матрица. В качестве приложений рассматриваемых преобразований введены и изучены свойства нелокального аналога оператора Лапласа. Для соответствующего нелокального уравнения Пуассона в единичном шаре исследованы вопросы разрешимости краевых задач Дирихле и Неймана. Доказана теорема об однозначной разрешимости задачи Дирихле, построены явный вид функции Грина и интегральное представление решения, а также найден порядок гладкости решения задачи в классе Гёльдера. Найдены также необходимые и достаточные условия разрешимости задачи Неймана, явный вид функции Грина и интегральное представление.
-
О разрешимости некоторых краевых задач для нелокального уравнения Пуассона с периодическими условиями, с. 137-154В настоящей работе с помощью отображений типа инволюции вводится нелокальный аналог оператора Лапласа. Для соответствующего нелокального аналога уравнения Пуассона в единичном шаре изучены новые классы краевых задач. В рассматриваемых задачах граничные условия заданы в виде связи значения искомой функции в верхней полусфере со значением в нижней полусфере. Исследуемые задачи обобщают известные периодические и антипериодические краевые задачи для круговых областей. Задачи решаются сведением их к двум вспомогательным задачам с краевыми условиями Дирихле и Неймана для нелокального аналога уравнения Пуассона. Используя известные утверждения для полученных вспомогательных задач, мы доказываем теоремы о существовании и единственности решения основных задач. Найдены точные условия разрешимости исследуемых задач, а также получены интегральные представления решений. Изучены также спектральные вопросы, связанные с периодическими задачами. Найдены собственные функции и собственные значения этих задач. Доказаны теоремы о полноте системы собственных функций в пространстве $L_2$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.