Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.
В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.
Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.
-
Для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определяется понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом. Приведены необходимые и достаточные условия существования квазиинтегралов, доказаны их основные свойства, в частности, аналог формулы интегрирования по частям.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.