Аналог матрицы Коши для системы квазиинтегральных уравнений с постоянными коэффициентами

 pdf (250K)

В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.

В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.

Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.

Ключевые слова: импульсное уравнение, прерывистая функция, квазиинтеграл.
Цитата: Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2012, вып. 2, с. 44-62
DOI: 10.20537/vm120205

Analogue of the Cauchy matrix for system of quasi-integral equations with constant coefficients

In previous article we defined the concept of quasi-integral for two regulated functions on the interval and the special parameter, called ¾defect¿. If there is the Riemann–Stieltjes integral, then for any defect there is a quasi-integral, and they are all equal. The Perron–Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way.

In the present article the theorem of existence and uniqueness of solution for a quasi-integral equation with a constant matrix is proved. System’s kernel is a scalar piecewise continuous function of bounded variation. Components of the equation are regulated functions, spectral parameter is a regular number. Under certain conditions a quasi-integral equation can be interpreted as an impulse system. An explicit representation for the solution of a quasi-integral homogeneous equation is given. For an absolutely regular spectral parameter, the analogue of the Cauchy matrix is defined, its properties are investigated and the explicit representation for the solution of the nonhomogeneous quasi-integral equation in the Cauchy form is given. Similar results are obtained for the adjoint and associated equations.

We discussed the possibility of restoration of the approximating defect of quasi-integral, which is defect generating approximated solutions of the impulse system.

Keywords: impulse system, regulated function, quasi-integral.
Citation in English: Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 2012, issue 2, pp. 44-62

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref