Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'информативный признак':
Найдено статей: 2
  1. Кучуганов А.В., Касимов Д.Р., Кучуганов В.Н.
    Моделирование рассуждений при поиске объектов на изображениях, с. 497-512

    Зрительные образы весьма вариативны. Например, рукописные буквы, объекты аэрокосмических наблюдений. Высокое разнообразие и большой объем неструктурированной информации приводят к необходимости сложных и ресурсоемких вычислений. В подходах к анализу изображений, опирающихся на онтологию предметной области, к сожалению, не оговаривается какой-либо способ автоматического подбора критериев (признаков) и правил принятия решений, а недостаточная структурированность прецедентов при большой вариативности изображений объектов приводит к быстрому росту базы прецедентов, что существенно снижает производительность системы поддержки принятия решений. В статье предлагается подход к структурному анализу изображений, заключающийся в последовательном уточнении признаков объектов и ослаблении правил интерпретации в ходе итерационного поиска фактов с использованием онтологии изображений, представленных в виде атрибутивных графов отношений между элементами объектов. Алгоритм рассуждений на графической информации состоит в последовательности задачных (функциональных) действий, необходимых для обработки и анализа изображения в соответствии с поставленной задачей, действий системы по подготовке условий для их выполнения, а также по организации и управлению процессом рассуждений.

  2. Рассматриваются задача классификации текстурных изображений и проблема уменьшения пространства признаков. Предлагается редукция задачи многоальтернативной классификации до бинарной одномерной задачи, в которой допустимо использовать байесовский подход c одномерными оценками распределений. Вводится гипотеза о бета-распределении значений признаков для одного класса. Параметры распределения оцениваются методом моментов. Для оценки четырех параметров требуются аналитические выражения и статистические оценки первых четырех моментов этого распределения. После оценки параметров осуществляется проверка гипотезы о распределении по критерию Пирсона. Экспериментально установлено, что модель бета-распределения в большинстве случаев применима к оценке распределений значений признаков. Сделан вывод о необходимости такой проверки для каждой обучающей выборки. В работе также предлагается по результатам оценки степени пересечений оцененных распределений классов оценивать эффективность признака. Рассматривается взаимная корреляция выбранных признаков. Вводится способ оценки информативности признаков, основанный на минимуме средней вероятности ошибки для одного признака и взаимной некоррелированности для системы признаков. На основе алгоритма оценки информативности строится система признаков для каждой пары классов. Формулируется алгоритм классификации, который использует полученные системы признаков и принимает решение на основе оценки плотности моделью бета-распределения на этапе бинарной задачи. Кроме того, cформулированный алгоритм объединяет результаты частных бинарных решений и принимает окончательное решение в задаче классификации.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref