Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.
-
Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.
-
Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.