Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Исследуются собственные значения и резонансы двухчастичного дискретного оператора Шредингера с малым убывающим потенциалом.
-
В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид
$$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$
здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида
$$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
+O(\varepsilon^3),$$где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.
-
В последнее десятилетие в физической литературе активно изучаются топологические изоляторы. Топологический изолятор - особый тип материала, который внутри объема представляет собой изолятор, а на поверхности проводит электрический ток. Топологические изоляторы обладают интересными физическими свойствами. Например, топологические свойства этого материала могут устойчиво сохраняться вплоть до высоких температур. Топологические изоляторы могут найти применение в самых разнообразных устройствах микроэлектроники: от очень быстрых и экономичных процессоров до топологических квантовых компьютеров. Электрон в топологическом изоляторе описывается безмассовым оператором Дирака. Такие операторы в квазиодномерных структурах (например, в полосках с различными граничными условиями) весьма интересны не только с физической, но и с математической точки зрения, однако до сих пор недостаточно изучены математиками. В данной статье рассматривается разностный оператор Дирака для потенциала вида $V_0 \delta_{n0}.$ Описан спектр и найдены собственные значения такого оператора. Кроме того, исследованы квазиуровни (собственные значения и резонансы) в случае малых потенциалов.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.