Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе рассматривается вывод законов кинематического управления движением трехколесного и четырехколесного экипажей с жесткими колесами вдоль произвольной гладкой траектории. Параметрами управления для трехколесного экипажа выбраны независимые углы вращения ведущих колес. Параметром управления четырехколесного экипажа выбран угол поворота переднего колеса в двухколесной модели автомобиля, определяемый углами поворота передних колес по принципу рулевого управления Аккермана. Установлено, что произведение скорости любой точки корпуса автомобиля на ориентированную кривизну ее траектории является кинематическим инвариантом, определяющим угловую скорость автомобиля. Приведены результаты численного моделирования и анимации движения трехколесного и четырехколесного экипажей, демонстрирующие адекватность предлагаемой модели кинематического управления. Обсуждаются возможности применения установленных законов кинематического управления движением при уточнении алгоритмов параллельной парковки, при решении навигационных задач управления механическими транспортными средствами при помощи навигационных систем ГЛОНАСС и GPS, при решении задач управления мобильными роботами с помощью датчиков слежения, а также при проектировании автодорог, транспортных развязок, паркингов, автозаправок, дорожных пунктов питания и при создании тренажеров.
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.