Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'кватернионы':
Найдено статей: 7
  1. Описан универсальный метод для моделирования равномерных распределений точек на гладких регулярных поверхностях в евклидовых пространствах различной размерности. Представлена интерпретация множества возможных значений параметров Родрига-Гамильтона, используемых при описании вращения твердого тела как множества точек трехмерной гиперсферы в четырехмерном евклидовом пространстве. Установлена связь между случайными равновероятными вращениями твердого тела и равномерным распределением точек на поверхности трехмерной гиперсферы в четырехмерном евклидовом пространстве.

  2. Полянский И.С., Радыгин В.М., Мисюрин С.Ю.
    Разложение регулярной кватернион-функции, с. 36-47

    В статье рассмотрены задачи, связанные с разложением регулярной кватернион-функции в обобщенные ряды Тейлора и Лорана. Обобщенный ряд Тейлора для регулярной кватернион-функции получен путем разложения ядра Коши в 4-мерном гипершаре в алгебре кватернионов и в системе гиперсферических координат. Обобщенный ряд Лорана для регулярной кватернион-функции получен путем разложения ядра Коши во внешности 4-мерного гипершара в алгебре кватернионов и в системе гиперсферических координат. На основе полученных решений при рассмотрении разложения регулярной кватернион-функции в бесконечно малом шаре, который ограничен 3-сферой, задано правило определения вычета регулярной кватернион-функции в алгебре кватернионов и в системе гиперсферических координат относительно изолированной особой точки. Также найдено разложение мероморфной кватернион-функции в степенной ряд.

  3. В статье разработаны методы, необходимые для решения задач конформного отображения многогранников в $\mathbb{R}^3$. Результаты получены с использованием алгебры кватернионов и геометрических представлений. Определены прямое и обратное конформные отображения: верхнего полупространства на единичный шар, шаровой луночки на двугранный угол, двугранного и многогранного углов на верхнее полупространство. При помощи полученных результатов найдены решения прямой и обратной задач конформного отображения многогранников на верхнее полупространство. Решение прямой задачи конформного отображения основано на результатах теоремы Кристоффеля-Шварца. Решение обратной задачи выполнено методом последовательных конформных отображений. В целом полученные взаимно однозначные отображения основаны на том, что по теореме Лиувилля все конформные диффеоморфизмы любой области в пространстве являются преобразованиями Мёбиуса.

  4. В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.

  5. Рассмотрена задача оптимального управления движением космического аппарата при коррекции его положения в инерциальной системе координат за счет управляющих моментов, получаемых от ускорений инерционных маховиков бесплатформенной инерциальной навигационной системы. Полученное оптимальное управление обеспечивает плавное изменение ориентации космического аппарата, которое рассматривается как движение по кратчайшей траектории в конфигурационном пространстве специальной ортогональной группы $SO(3)$. Алгоритм управления реализуется с использованием оригинальной процедуры нелинейной сферической интерполяции кватернионов. Основными исполнительными органами ориентации динамического контура управления бесплатформенной инерциальной навигационной системой при решении задачи оптимального управления были выбраны четыре инерционных маховика (три - по осям космического аппарата, четвертый - по биссектрисе). Результаты моделирования верифицируются путем создания анимации корректирующего движения космического аппарата.

  6. Многие задачи управления движением и навигации, робототехники и компьютерной графики связаны с описанием вращения твердого тела в трехмерном пространстве. Для решения подобных задач дается конструктивное решение задачи о плавном перемещении твердого тела в пространстве ориентаций по кратчайшей траектории, проходящей через точки пространства, равномерно его заполняющие. Сферическому движению твердого тела ставится в соответствие движение точки по гиперсфере в четырехмерном пространстве по дугам большого радиуса, соединяющим вершины одного из правильных центросимметричных четырехмерных многогранников. Плавное движение обеспечивается выбором специальной нелинейной функции при интерполяции кватернионов, задающих положения вершин правильных многогранников. Для аналитического представления закона непрерывного движения используется оригинальное алгебраическое представление функции Хевисайда через линейную, квадратичную и иррациональную функции. Алгоритм плавного движения твердого тела через узлы однородной решетки на группе $SO(3)$ иллюстрируется анимацией, выполненной в компьютерной программе MathCad. Предложенный метод позволяет в широких пределах менять временные интервалы межузельных перемещений, а также законы движения на этих интервалах.

  7. Митюшов Е.А., Мисюра Н.Е., Берестова С.А.
    К 175-летию открытия кватернионов, с. 611-617

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref