Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'классические области':
Найдено статей: 12
  1. Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.

  2. Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.

  3. Работа посвящена исследованию разрешимости обратной краевой задачи с неизвестным коэффициентом и правой частью, зависящей от времени, для линеаризованного уравнения Бенни-Люка с несамосопряженными краевыми и с дополнительными интегральными условиями. Задача рассматривается в прямоугольной области. Дается определение классического решения поставленной задачи. Сначала рассматривается вспомогательная обратная краевая задача и доказывается ее эквивалентность (в определенном смысле) исходной задаче. Для исследования вспомогательной обратной краевой задачи сначала используется метод разделения переменных. После применения формальной схемы метода разделения переменных решение прямой краевой задачи (при заданной неизвестной функции) сводится к решению задачи с неизвестными коэффициентами. После этого решение задачи сводится к решению некоторой счетной системы интегро-дифференциальных уравнений относительно неизвестных коэффициентов. В свою очередь, последняя система относительно неизвестных коэффициентов записывается в виде одного интегро-дифференциального уравнения относительно искомого решения. Затем, используя соответствующие дополнительные условия обратной вспомогательной краевой задачи, для определения неизвестных функций получаем систему двух нелинейных интегральных уравнений. Таким образом, решение вспомогательной обратной краевой задачи сводится к системе из трех нелинейных интегро-дифференциальных уравнений относительно неизвестных функций. Строится конкретное банахово пространство. Далее, в шаре из построенного банахова пространства с помощью сжатых отображений доказывается разрешимость системы нелинейных интегро-дифференциальных уравнений, которая также является единственным решением вспомогательной обратной краевой задачи. С использованием эквивалентности задач доказывается существование и единственность классического решения исходной задачи.

  4. Ачарджи С., Молодцов Д.А.
    Мягкий рациональный криволинейный интеграл, с. 578-596

    Теория мягких множеств — это новая область математики, которая имеет дело с неопределенностями. Приложения теории мягких множеств широко распространены в различных областях науки и социальных наук, таких как принятие решений, информатика, распознавание образов, искусственный интеллект и т.д. Важность мягких теоретико-множественных версий математического анализа ощущается в нескольких областях информатики. В этой статье предлагаются некоторые концепции мягкого градиента функции и мягкого интеграла, аналога криволинейного интеграла в классическом анализе. Установлены основные свойства мягких градиентов. Найдено необходимое и достаточное условие, при котором множество может быть подмножеством мягкого градиента некоторой функции. Доказано включение мягкого градиента в мягкий интеграл. Установлены полуаддитивность и положительная однородность мягкого интеграла. Получены оценки мягкого интеграла и размера его отрезка. Полуаддитивность относительно верхнего предела интегрирования доказана. Кроме того, эта статья расширяет теоретические развитие мягкого рационального криволинейного интеграла и связанных областей для повышения функциональности с точки зрения вычислительных систем.

  5. Сопоставляя реальному пространству декартову систему координат (линейное векторное пространство), И. Ньютон рассматривал его как вместилище и не наделял какой-либо внутренней структурой. Такой подход приводит к феноменологическому описанию экспериментально наблюдаемых силовых полей и вынуждает каждому силовому полю сопоставлять источник. Некорректная, однако, весьма эффективная в вопросах статики интерпретация алгебры Клиффорда в виде аналитической геометрии, получившая повсеместное признание благодаря усилиям Хевисайда, не является алгеброй в ее математическом понимании. Следствием этого является, например, отсутствие в классической механике меры (спин), наблюдаемой экспериментально.
    В отличие от такого подхода в работе реальному пространству сопоставляется векторное пространство, обладающее алгеброй Клиффорда, что позволяет вводить меры, связанные с понятиями триада, четыреада, и допускают совместное рассмотрение большого количества трехмерных полей. Объектам реальности, которые обозначаются терминами «заряд», «точечная масса», сопоставляются силовые поля, объясняющие результаты экспериментов, лежавших в основе квантовой механики в прошлом веке. Особенности силовых полей отнесены к особенностям метрики и допускают существование статически устойчивых образований без каких-либо дополнительных постулатов.

  6. В работе исследована обратная краевая задача с неизвестным коэффициентом, зависящим от времени, для одного уравнения Буссинеска четвертого порядка с нелокальными интегральными по времени условиями второго рода. Дается определение классического решения поставленной задачи. Суть задачи состоит в том, что требуется вместе с решением определить неизвестный коэффициент. Задача рассматривается в прямоугольной области. При решении исходной обратной краевой задачи осуществляется переход от исходной обратной задачи к некоторой вспомогательной обратной задаче. С помощью сжатых отображений доказываются существование и единственность решения вспомогательной задачи. Затем вновь производится переход к исходной обратной задаче, в результате делается вывод о разрешимости исходной обратной задачи.

  7. Матричный шар третьего типа и обобщенный шар Ли, связанные с классическими областями, играют важную роль в теории функций многих комплексных переменных. В данной работе вычислены объемы матричного шара третьего типа и обобщенного шара Ли. Полные объемы этих областей необходимы для нахождения ядер интегральных формул для этих областей (ядра Бергмана, Коши-Сегё, Пуассона и т. д.). Кроме того, он используется для интегрального представления функции, голоморфной на этих областях, в теореме о среднем значении и других важных понятиях. Результаты, полученные в этой статье, являются общим случаем результатов Хуа Ло-кена, и его результаты в частных случаях совпадают с нашими результатами.

  8. Классическая система реакции-диффузии — система Шнакенберга — рассматривается в ограниченной области $m$-мерного пространства, на границе которой предполагаются выполненными краевые условия Неймана. Изучается диффузионная неустойчивость стационарного пространственно-однородного решения этой системы, называемая также неустойчивостью Тьюринга, возникающая при изменении коэффициента диффузии $d.$ Путем анализа линеаризованной системы в бездиффузионном и диффузионном приближениях получено аналитическое описание области необходимых и достаточных условий неустойчивости Тьюринга на плоскости параметров системы. Показано, что одна из границ области необходимых условий является огибающей семейства кривых, ограничивающих область достаточных условий. При этом точки пересечения двух соседних кривых лежат на прямой, угловой коэффициент которой зависит от собственных значений оператора Лапласа в рассматриваемой области и не зависит от коэффициента диффузии. Найдено аналитическое выражение критического коэффициента диффузии, при котором происходит потеря устойчивости положения равновесия системы. Указаны условия, в зависимости от которых множество волновых чисел, соответствующих нейтральным модам устойчивости, счетно, конечно или пусто. Показано, что полуось $d>1$ можно представить в виде счетного объединения полуинтервалов, каждому из которых соответствует минимальное волновое число, при котором происходит потеря устойчивости, причем точки разбиения полуоси выражаются через собственные значения оператора Лапласа в рассматриваемой области.

  9. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

  10. Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref