Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных дифференциальных систем на положительной полуоси. На множестве ненулевых решений систем установлены соотношения между этими показателями колеблемости. Доказано, что все сильные показатели колеблемости (в отличие от частот Сергеева смен знаков, нулей и корней, а также всех слабых показателей колеблемости), рассматриваемые как функции на множестве решений линейных однородных дифференциальных систем с непрерывными на полуоси коэффициентами, не являются остаточными (т.е. могут меняться при изменении решения на конечном отрезке). Кроме того, при любом наперед заданном натуральном $n\ge2$ приводится пример $n$-мерной дифференциальной системы, у которой все сильные показатели колеблемости некоторого решения не совпадают с соответствующими слабыми показателями. При этом все слабые и все сильные показатели на выбранном решении совпадают соответственно между собой. При доказательстве результатов настоящей работы отдельно рассмотрены случаи четности и нечетности $n$.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.
-
В настоящей работе исследуются различные разновидности частот Сергеева и показателей колеблемости решений линейных однородных дифференциальных уравнений с непрерывными ограниченными коэффициентами. Для любого наперед заданного натурального числа $N$ конструктивно в работе построено периодическое линейное дифференциальное уравнение третьего порядка, обладающее тем свойством, что его спектры верхних и нижних частот Сергеева строгих знаков, нулей и корней, а также спектры всех верхних и нижних сильных и слабых показателей колеблемости строгих и нестрогих знаков, нулей, корней и гиперкорней содержат один и тот же набор, состоящий из $N$ различных существенных значений, причем как метрически, так и топологически. Более того, все эти значения реализованы на одном и том же наборе решений построенного уравнения, то есть для каждого решения из этого набора все перечисленные выше частоты и показатели колеблемости совпадают между собой. При построении указанного уравнения и доказательстве требуемых результатов использованы аналитические методы качественной теории дифференциальных уравнений, в частности, методы теории возмущений решений линейных дифференциальных уравнений, а также авторская методика управления фундаментальной системой решений таких уравнений в одном частном случае.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.