Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'контрстратегии.':
Найдено статей: 8
  1. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены необходимые и достаточные условия поимки в случае, когда убегающий стеснен фазовыми ограничениями.

  2. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены достаточные условия уклонения от встречи в классе позиционных контрстратегий.

  3. Рассматривается задача простого преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Получены достаточные условия поимки.

  4. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

  5. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.

  6. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая системой вида $$ \dot z_{ij} = u_i - v,\quad u_i,v \in V. $$ Предполагается, что убегающие используют одно и то же управление. Преследователи используют контрстратегии на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений $V$ — шар единичного радиуса с центром в начале координат, целевые множества — начало координат. Целью группы преследователей является поимка хотя бы одного убегающего двумя преследователями. В терминах начальных позиций и параметров игры получено достаточное условие поимки. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время.

  7. В контексте задач гарантированного управления рассматриваются следующие вопросы: связь возможности пошагового (на заданном разбиении $\Delta$) вычисления селектора мультифункции (м/ф) $\alpha$ для неизвестного, восстанавливаемого по шагам $\Delta$, аргумента с существованием у $\alpha$ мультиселектора (м/с) со специальным свойством (названым здесь $\Delta$-неупреждаемостью или частичной неупреждаемостью); второй вопрос — способы построение такого м/с для произвольной пары $(\alpha, \Delta)$; и последний — поиск эффективно проверяемых условий, обеспечивающих совпадение $\Delta$-неупреждающего м/с с неупреждающим.

    Мотивом к рассмотрению этих вопросов послужила схема управления, возникающая, например, в методе альтернированного интеграла, при использовании в управлении контрстратегий, или в некоторых задачах при использовании метода управления с поводырём.

    В работе показано, что рассматриваемая пошаговая схема управления реализуема тогда и только тогда, когда м/ф $\alpha$ имеет $\Delta$-неупреждающий и непустозначный м/с. Дана конечношаговая процедура построения такого м/с. Указаны эффективно проверяемые условия, обеспечивающие неупреждаемость частично неупреждающего м/с. Рассмотрены иллюстрирующие примеры.

  8. В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается линейная задача преследования группой преследователей одного убегающего, описываемая в заданной временной шкале $\mathbb{T}$ уравнениями вида \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} где $z_i^{\Delta}$ — $\Delta$-производная функций $z_i$ во временной шкале $\mathbb{T}$, $a$ — произвольное число, не равное нулю. Множество допустимых управлений для каждого участника представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — заданные выпуклые компакты в $\mathbb R^k$. Преследователи действуют согласно контрстратегиям на основе информации о начальных позициях и предыстории управления убегающего. В терминах начальных позиций и параметров игры получено достаточное условие поимки. Для случая задания временной шкалы в виде $\mathbb T = \{\tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ найдены достаточные условия разрешимости задач преследования и уклонения. При исследовании в обоих случаях в качестве базового используется метод разрешающих функций.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref